Page 110 - Read Online
P. 110
Page 22 of 30 Kim et al. Soft Sci 2023;3:16 https://dx.doi.org/10.20517/ss.2023.07
Availability of data and materials
Not applicable.
Financial support and sponsorship
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean
government (MSIT) (No. 2022M3H4A1A02046445).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Aheleroff S, Xu X, Lu Y, et al. IoT-enabled smart appliances under industry 4.0: a case study. Adv Eng Inform 2020;43:101043. DOI
2. Wang XX, Cao WQ, Cao MS, Yuan J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv
Mater 2020;32:e2002112. DOI PubMed
3. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward.
Nat Rev Cardiol 2021;18:581-99. DOI PubMed PMC
4. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57. DOI
5. Ahn S, Han TH, Maleski K, et al. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv
Mater 2020;32:e2000919. DOI
6. Mackanic DG, Chang TH, Huang Z, Cui Y, Bao Z. Stretchable electrochemical energy storage devices. Chem Soc Rev 2020;49:4466-
95. DOI PubMed
7. Lim K, Han T, Lee T. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and
light-emitting diodes. Energy Environ Sci 2021;14:2009-35. DOI
8. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:e2003155. DOI
PubMed
9. Wu J, Pang H, Ding L, et al. A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling
strategy. Chem Eng J 2021;421:129830. DOI
10. Kadumudi FB, Hasany M, Pierchala MK, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-
graphene hydrogels. Adv Mater 2021;33:e2100047. DOI
11. Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv
Mater 2020;32:e1902254. DOI PubMed
12. Chen Y, Carmichael RS, Carmichael TB. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent
conductive electrodes. ACS Appl Mater Interf 2019;11:31210-9. DOI
13. Li M, Yang YG, Wang ZK, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells
with superior mechanical stability. Adv Mater 2019;31:e1901519. DOI
14. Chen X, Xu G, Zeng G, et al. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a
“welding” flexible transparent electrode. Adv Mater 2020;32:e1908478. DOI
15. Kou Y, Sun K, Luo J, et al. An intrinsically flexible phase change film for wearable thermal managements. Energy Stor Mater
2021;34:508-14. DOI
16. Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing.
Small 2022;18:e2103734. DOI
17. Hu Y, Zheng Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 2019;56:16-24. DOI
18. Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019;65:104033. DOI
19. Lessing J, Glavan AC, Walker SB, Keplinger C, Lewis JA, Whitesides GM. Inkjet printing of conductive inks with high lateral
resolution on omniphobic “R(F) paper” for paper-based electronics and MEMS. Adv Mater 2014;26:4677-82. DOI
20. Yu KJ, Yan Z, Han M, Rogers JA. Inorganic semiconducting materials for flexible and stretchable electronics. NPJ Flex Electron

