Page 111 - Read Online
P. 111
Kim et al. Soft Sci 2023;3:16 https://dx.doi.org/10.20517/ss.2023.07 Page 23 of 30
2017:1. DOI
21. Chung HU, Kim BH, Lee JY, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive
care. Science 2019:363. DOI PubMed PMC
22. Rogers JA, Chen X, Feng X. Flexible hybrid electronics. Adv Mater 2020;32:e1905590. DOI
23. Xie Z, Avila R, Huang Y, Rogers JA. Flexible and stretchable antennas for biointegrated electronics. Adv Mater 2020;32:e1902767.
DOI PubMed
24. Kamat AM, Pei Y, Jayawardhana B, Kottapalli AGP. Biomimetic soft polymer microstructures and piezoresistive graphene MEMS
sensors using sacrificial metal 3D printing. ACS Appl Mater Interf 2021;13:1094-104. DOI PubMed PMC
25. Xu R, Lin YS. Flexible and controllable metadevice using self-assembly MEMS actuator. Nano Lett 2021;21:3205-10. DOI PubMed
26. Yang Q, Liu T, Xue Y, et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat Electron 2022;5:526-38. DOI
27. Zheng X, Kamat AM, Krushynska AO, Cao M, Kottapalli AGP. 3D printed graphene piezoresistive microelectromechanical system
sensors to explain the ultrasensitive wake tracking of wavy seal whiskers. Adv Funct Mater 2022;32:2207274. DOI
28. Kim RH, Kim DH, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and
robotics. Nat Mater 2010;9:929-37. DOI
29. Kim RH, Kim S, Song YM, et al. Flexible vertical light emitting diodes. Small 2012;8:3123-8. DOI
30. McCall JG, Kim TI, Shin G, et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless
optogenetics. Nat Protoc 2013;8:2413-28. DOI PubMed PMC
31. Park G, Chung HJ, Kim K, et al. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv
Healthc Mater 2014;3:515-25. DOI
32. Kim TH, Lee CS, Kim S, et al. Fully Stretchable optoelectronic sensors based on colloidal quantum dots for sensing
photoplethysmographic signals. ACS Nano 2017;11:5992-6003. DOI
33. Seo HK, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode.
Adv Mater 2017;29:1605587. DOI
34. Shin G, Gomez AM, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in
optogenetics. Neuron 2017;93:509-521.e3. DOI PubMed PMC
35. Jung HH, Song J, Nie S, et al. Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices. Adv
Mater Technol 2018;3:1800159. DOI
36. Song E, Chiang CH, Li R, et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.
Proc Natl Acad Sci U S A 2019;116:15398-406. DOI PubMed PMC
37. Lee H, Jiang Z, Yokota T, Fukuda K, Park S, Someya T. Stretchable organic optoelectronic devices: design of materials, structures,
and applications. Mater Sci Eng R Rep 2021;146:100631. DOI
38. Zhou H, Han SJ, Lee HD, et al. Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices. Adv
Mater 2022;34:e2206377. DOI
39. Fukuda K, Sekitani T, Zschieschang U, et al. A 4 V operation, flexible braille display using organic transistors, carbon nanotube
actuators, and organic static random-access memory. Adv Funct Mater 2011;21:4019-27. DOI
40. Kim DH, Wang S, Keum H, et al. Thin, flexible sensors and actuators as “instrumented” surgical sutures for targeted wound
monitoring and therapy. Small 2012;8:3263-8. DOI
41. Rogers JA. Materials science. A clear advance in soft actuators. Science 2013;341:968-9. DOI PubMed
42. Webb RC, Pielak RM, Bastien P, et al. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal
arrays of thermal sensors and actuators. PLoS One 2015;10:e0118131. DOI PubMed PMC
43. Yu C, Yuan P, Erickson EM, Daly CM, Rogers JA, Nuzzo RG. Oxygen reduction reaction induced pH-responsive chemo-mechanical
hydrogel actuators. Soft Matter 2015;11:7953-9. DOI
44. Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature
2016;536:451-5. DOI
45. Ling Y, Pang W, Li X, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-
soft actuators interaction. Adv Mater 2020;32:e1908475. DOI
46. Pang W, Xu S, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces.
Proc Natl Acad Sci U S A 2022;119:e2215028119. DOI PubMed PMC
47. Jeong JW, McCall JG, Shin G, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell
2015;162:662-74. DOI PubMed PMC
48. Choi J, Bandodkar AJ, Reeder JT, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis
of sweat biomarkers and temperature. ACS Sens 2019;4:379-88. DOI
49. Reeder JT, Choi J, Xue Y, et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker
analysis, and thermography in aquatic settings. Sci Adv 2019;5:eaau6356. DOI PubMed PMC
50. Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride
analytics for sports science applications. Sci Adv 2020:6. DOI PubMed PMC
51. Luan H, Zhang Q, Liu TL, et al. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Sci
Adv 2021;7:eabj3686. DOI PubMed PMC
52. Baker LB, Seib MS, Barnes KA, et al. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat

