Page 111 - Read Online
P. 111

Kim et al. Soft Sci 2023;3:16  https://dx.doi.org/10.20517/ss.2023.07           Page 23 of 30

                    2017:1.  DOI
               21.       Chung HU, Kim BH, Lee JY, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive
                    care. Science 2019:363.  DOI  PubMed  PMC
               22.       Rogers JA, Chen X, Feng X. Flexible hybrid electronics. Adv Mater 2020;32:e1905590.  DOI
               23.       Xie Z, Avila R, Huang Y, Rogers JA. Flexible and stretchable antennas for biointegrated electronics. Adv Mater 2020;32:e1902767.
                    DOI  PubMed
               24.       Kamat AM, Pei Y, Jayawardhana B, Kottapalli AGP. Biomimetic soft polymer microstructures and piezoresistive graphene MEMS
                    sensors using sacrificial metal 3D printing. ACS Appl Mater Interf 2021;13:1094-104.  DOI  PubMed  PMC
               25.       Xu R, Lin YS. Flexible and controllable metadevice using self-assembly MEMS actuator. Nano Lett 2021;21:3205-10.  DOI  PubMed
               26.       Yang Q, Liu T, Xue Y, et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat Electron 2022;5:526-38.  DOI
               27.       Zheng X, Kamat AM, Krushynska AO, Cao M, Kottapalli AGP. 3D printed graphene piezoresistive microelectromechanical system
                    sensors to explain the ultrasensitive wake tracking of wavy seal whiskers. Adv Funct Mater 2022;32:2207274.  DOI
               28.       Kim RH, Kim DH, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and
                    robotics. Nat Mater 2010;9:929-37.  DOI
               29.       Kim RH, Kim S, Song YM, et al. Flexible vertical light emitting diodes. Small 2012;8:3123-8.  DOI
               30.       McCall JG, Kim TI, Shin G, et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless
                    optogenetics. Nat Protoc 2013;8:2413-28.  DOI  PubMed  PMC
               31.       Park G, Chung HJ, Kim K, et al. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv
                    Healthc Mater 2014;3:515-25.  DOI
               32.       Kim  TH,  Lee  CS,  Kim  S,  et  al.  Fully  Stretchable  optoelectronic  sensors  based  on  colloidal  quantum  dots  for  sensing
                    photoplethysmographic signals. ACS Nano 2017;11:5992-6003.  DOI
               33.       Seo HK, Kim H, Lee J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode.
                    Adv Mater 2017;29:1605587.  DOI
               34.       Shin G, Gomez AM, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in
                    optogenetics. Neuron 2017;93:509-521.e3.  DOI  PubMed  PMC
               35.       Jung HH, Song J, Nie S, et al. Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices. Adv
                    Mater Technol 2018;3:1800159.  DOI
               36.       Song E, Chiang CH, Li R, et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.
                    Proc Natl Acad Sci U S A 2019;116:15398-406.  DOI  PubMed  PMC
               37.       Lee H, Jiang Z, Yokota T, Fukuda K, Park S, Someya T. Stretchable organic optoelectronic devices: design of materials, structures,
                    and applications. Mater Sci Eng R Rep 2021;146:100631.  DOI
               38.       Zhou H, Han SJ, Lee HD, et al. Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices. Adv
                    Mater 2022;34:e2206377.  DOI
               39.       Fukuda K, Sekitani T, Zschieschang U, et al. A 4 V operation, flexible braille display using organic transistors, carbon nanotube
                    actuators, and organic static random-access memory. Adv Funct Mater 2011;21:4019-27.  DOI
               40.       Kim DH, Wang S, Keum H, et al. Thin, flexible sensors and actuators as “instrumented” surgical sutures for targeted wound
                    monitoring and therapy. Small 2012;8:3263-8.  DOI
               41.       Rogers JA. Materials science. A clear advance in soft actuators. Science 2013;341:968-9.  DOI  PubMed
               42.       Webb RC, Pielak RM, Bastien P, et al. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal
                    arrays of thermal sensors and actuators. PLoS One 2015;10:e0118131.  DOI  PubMed  PMC
               43.       Yu C, Yuan P, Erickson EM, Daly CM, Rogers JA, Nuzzo RG. Oxygen reduction reaction induced pH-responsive chemo-mechanical
                    hydrogel actuators. Soft Matter 2015;11:7953-9.  DOI
               44.       Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature
                    2016;536:451-5.  DOI
               45.       Ling Y, Pang W, Li X, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-
                    soft actuators interaction. Adv Mater 2020;32:e1908475.  DOI
               46.       Pang W, Xu S, Wu J, et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces.
                    Proc Natl Acad Sci U S A 2022;119:e2215028119.  DOI  PubMed  PMC
               47.       Jeong JW, McCall JG, Shin G, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell
                    2015;162:662-74.  DOI  PubMed  PMC
               48.       Choi J, Bandodkar AJ, Reeder JT, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis
                    of sweat biomarkers and temperature. ACS Sens 2019;4:379-88.  DOI
               49.       Reeder JT, Choi J, Xue Y, et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker
                    analysis, and thermography in aquatic settings. Sci Adv 2019;5:eaau6356.  DOI  PubMed  PMC
               50.       Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride
                    analytics for sports science applications. Sci Adv 2020:6.  DOI  PubMed  PMC
               51.       Luan H, Zhang Q, Liu TL, et al. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Sci
                    Adv 2021;7:eabj3686.  DOI  PubMed  PMC
               52.       Baker LB, Seib MS, Barnes KA, et al. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat
   106   107   108   109   110   111   112   113   114   115   116