Page 55 - Read Online
P. 55

12.  Morganti P. Use and potential of nanotechnology in cosmetic dermatology.
                                                                  Clin Cosmet Investig Dermatol 2010;3:5‑13.
                                                              13.  Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and
                                                                  NLC): present state of development and industrial applications. Curr Drug
                                                                  Discov Technol 2011;8:207‑27.
                                                              14.  Inui S, Aoshima H, Nishiyama A, Itami S. Improvement of acne vulgaris by
                                                                  topical fullerene application: unique impact on skin care.  Nanomedicine
                                                                  2011;7:238‑41.
                                                              15.  Puskas JE, Luebbers MT. Breast implants: the good, the bad and the ugly.
                                                                  Can  nanotechnology  improve  implants?  Wiley  Interdiscip  Rev  Nanomed
                                                                  Nanobiotechnol 2012;4:153‑68.
                                                              16.  Zeplin PH, Larena‑Avellaneda A, Schmidt K. Surface modification of silicone
                                                                  breast implants by binding the antifibrotic drug halofuginone reduces capsular
                                                                  fibrosis. Plast Reconstr Surg 2010;126:266‑74.
                                                              17.  Klumpp D, Horch RE, Kneser U, Beier JP. Engineering skeletal muscle tissue
                                                                  – new perspectives in vitro and in vivo. J Cell Mol Med 2010;14:2622‑9.
                                                              18.  Oseni A, Crowley  C, Lowdell  M, Birchall  M, Butler  PE, Seifalian AM.
                                                                  Advancing nasal reconstructive surgery: the application of tissue engineering
                                                                  technology. J Tissue Eng Regen Med 2012;6:757‑68.
          Figure  5: Active versus passive targeting  of cancerous  tissue.   19.  Gerstle TL,  Ibrahim AM,  Kim  PS,  Lee  BT,  Lin  SJ. A  plastic  surgery
          Nanoparticles passively diffuse through the highly permeable
          endothelial layer of blood  vessels in  cancer tissue.  In  addition,   application  in  evolution:  three‑dimensional  printing.  Plast  Reconstr  Surg
          decreased  lymphatic drainage from solid cancer tissue prevents the   2014;133:446‑51.
          nanodrug from returning to the systemic circulation. Active nanodrugs   20.  Hu  MS, Maan  ZN, Wu  JC, Rennert  RC, Hong WX, Lai TS, Cheung AT,
          target  the tumor tissue with engineered  tissue-specific  ligands on the   Walmsley  GG,  Chung  MT,  McArdle A,  Longaker  MT,  Lorenz  HP. Tissue
          surface of the nanodrug  (used with permission)         engineering and regenerative repair in wound healing.  Ann Biomed Eng
                          [2]
                                                                  2014;42:1494‑507.
                                                              21.  Sivolella S, Brunello G, Ferrarese N, Della Puppa A, D’Avella D, Bressan E,
          Specifically, wound management, topical skin care, implant   Zavan  B.  Nanostructured  guidance  for  peripheral  nerve  injuries:  a
          and prosthetic design,  tissue  engineering,  and drug   review with a perspective in the oral and maxillofacial area. Int J Mol Sci
          delivery systems have each been influenced by advances   2014;15:3088‑117.
          in  nanotechnology.  As our understanding of biology   22.  Konofaos  P, Ver  Halen  JP.  Nerve  repair  by  means  of  tubulization:  past,
                                                                  present, future. J Reconstr Microsurg 2013;29:149‑64.
          on the nanolevel progresses, the use of this technology   23.  Wang W, Itoh  S, Konno  K, Kikkawa T, Ichinose  S, Sakai  K, Ohkuma T,
          will  increase  exponentially.  These  characteristics make   Watabe  K. Effects of Schwann cell alignment along the oriented
          nanotechnology a powerful tool when applied  to all     electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater
          aspects of tissue reconstruction.                       Res A 2009;91:994‑1005.
                                                              24.  Sedaghati T, Yang  SY, Mosahebi A, Alavijeh  MS, Seifalian AM. Nerve
                                                                  regeneration with aid of nanotechnology and cellular engineering. Biotechnol
          REFERENCES                                              Appl Biochem 2011;58:288‑300.
                                                              25.  Tavangarian F, Li Y. Carbon nanostructures as nerve scaffolds for repairing
                                                                  large gaps in severed nerves. Ceram Int 2012;38:6075‑90.
          1.   Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in
             human health care. Nanomedicine 2007;3:20‑31.    26.  Biggs MJ, Dalby MJ. Focal adhesions in osteoneogenesis. Proc Inst Mech Eng H
          2.   Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology   2010;224:1441‑53.
             and medicine. Genes Dev 2013;27:2397‑408.        27.  Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate
          3.   Saadeh Y, Leung T, Vyas A, Chaturvedi LS, Perumal O, Vyas D. Applications   dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A
             of nanomedicine in breast cancer detection, imaging, and therapy. J Nanosci   2009;106:2130‑5.
             Nanotechnol 2014;14:913‑23.                      28.  Raimondo T, Puckett S, Webster TJ. Greater osteoblast and endothelial cell
          4.   Rajesh O, Gitanjaly S, Surbhi M. Nano‑Bio‑technology excellence in health   adhesion on nanostructured polyethylene and titanium. Int J Nanomedicine
             carenano‑bio‑technology  excellence  in  health  care:  a  review.  Internet  J   2010;5:647‑52.
             Nanotechnol 2004;1. Available from : http://www.ispub.com/IJNT/1/2/7910.  29.  Liu H, Webster TJ. Mechanical properties of dispersed ceramic nanoparticles
             [Last Accessed on 2014 May 01].                      in  polymer  composites  for  orthopedic  applications.  Int  J  Nanomedicine
          5.   Hromadka M, Collins JB, Reed C, Han L, Kolappa KK, Cairns BA, Andrady T,   2010;5:299‑313.
             van Aalst  JA. Nanofiber applications for burn care.  J  Burn Care Res   30.  Poinern GJ,  Brundavanam R,  Le  XT,  Djordjevic S,  Prokic M,  Fawcett D.
             2008;29:695‑703.                                     Thermal  and  ultrasonic  influence  in  the  formation  of  nanometer  scale
          6.   Choi  JS, Leong  KW, Yoo  HS. In vivo  wound healing of diabetic ulcers   hydroxyapatite bio‑ceramic. Int J Nanomedicine 2011;6:2083‑95.
             using electrospun nanofibers immobilized with human epidermal growth   31.  Abd El‑Fattah  H, Helmy Y, El‑Kholy  B, Marie  M. In vivo  animal
             factor (EGF). Biomaterials 2008;29:587‑96.           histomorphometric study for evaluating biocompatibility and
          7.   Muzzarelli RA, Guerrieri M, Goteri G, Muzzarelli C, Armeni T, Ghiselli R,   osteointegration of nano‑hydroxyapatite as biomaterials in tissue
             Cornelissen M. The biocompatibility of dibutyryl chitin in the context of   engineering. J Egypt Natl Canc Inst 2010;22:241‑50.
             wound dressings. Biomaterials 2005;26:5844‑54.   32.  Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of
          8.   Mattioli‑Belmonte M, Zizzi A, Lucarini G, Giantomassi F, Biagini G, Tucci G,   human mesenchymal stem cells by bioactive composite scaffolds without
             Orlando F, Provinciali M, Carezzi F, Morganti P. Chitin nanofibrils linked to   supplemental osteogenic growth factors. PLoS One 2011;6:e26211.
             chitosan glycolate as spray, gel, and gauze preparations for wound repair.   33.  Bhardwaj A, Bhardwaj A, Misuriya A, Maroli  S, Manjula  S, Singh AK.
             J Bioact Compat Polym 2007;22:525‑38.                Nanotechnology  in  dentistry:  present  and  future.  J  Int  Oral  Health
          9.   Sibbald RG, Browne AC, Coutts P, Queen D. Screening evaluation of an   2014;6:121‑6.
             ionized nanocrystalline silver dressing in chronic wound care. Ostomy Wound   34.  Uskokovic V, Desai TA. Simultaneous bactericidal and osteogenic effect of
             Manage 2001;47:38‑43.                                nanoparticulate calcium phosphate powders loaded with clindamycin on
          10.  Cortivo  R, Vindigni V, Iacobellis  L, Abatangelo  G, Pinton  P, Zavan  B.   osteoblasts infected with Staphylococcus aureus. Mater Sci Eng C Mater Biol
             Nanoscale particle therapies for wounds and ulcers. Nanomedicine (Lond)   Appl 2014;37:210‑22.
             2010;5:641‑56.                                   35.  Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R, Lee M, Siu RK, Ngo R,
          11.  Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z. Silver nanoparticle/bacterial   Wang J, Carpenter D, Zhang X, Wu B, Ting K, Soo C. The use of BMP‑2
             cellulose gel membranes for antibacterial wound dressing: investigation in vitro   coupled‑Nanosilver‑PLGA composite grafts to induce bone repair in grossly
             and in vivo. Biomed Mater 2014;9:035005.             infected segmental defects. Biomaterials 2010;31:9293‑300.

          Plast Aesthet Res || Vol 1 || Issue 2 ||  Sep 2014                                                49
   50   51   52   53   54   55   56   57   58   59   60