Page 74 - Read Online
P. 74

Page 12 of 23                    Tan et al. Complex Eng Syst 2023;3:6  I http://dx.doi.org/10.20517/ces.2023.10


               where

                                         
                       ∑              ∑
                            T    T
                         (2   (  )A R      G              (  ))
                                     
                              
                         =1             =1,  ≠  
                                       
                         ∑          ∑
                                            T   T              −1 T     T
                       ≤   ((   − 1)         2    (  )G        R    G              (  ) +       (  )A R    A            (  )),
                                             
                                                                           
                                                                    
                                                                 2
                           =1        =1,  ≠  
                                                      
                       ∑              ∑             ∑
                            T                T  T
                         (2   (   −       (  ))           B R     G              (  ))
                              
                                                  
                         =1             =1           =1,  ≠  
                                       
                         ∑          ∑
                                            T         T
                       ≤   ((   − 1)         3    (   −       (  ))G        R    G              (   −       (  ))
                                             
                           =1        =1,  ≠  
                                                        
                                     ∑               ∑
                         −1 T                T  T           
                       +      (   −       (  ))      B R    B                (   −       (  )),
                           3                                 
                                       =1              =1
                                                    
                       ∑   ∑               T     ∑
                                            T
                                     T
                                (  )
                         (2   (         (  ))          B R     G              (  ))
                                                
                         =1    =1                 =1,  ≠  
                                                                                            
                         ∑          ∑                             ∑                      ∑
                                            T   T              −1     (  )  T     T  T            (  )
                       ≤   ((   − 1)         4    (  )G        R    G              (  ) +      4  (         (  ))          B R    B              (  )),
                                                                                                       
                                                                                      
                                             
                           =1        =1,  ≠                         =1                     =1
                                                                        
                       ∑ ∑                 ∑              ∑          ∑
                                T    T                                    T    T
                         (        (  )G         R     G              (  )) ≤  (   − 1)     (  )G        R    G              (  ).
                                   
                                                                            
                         =1   =1,  ≠        =1,  ≠           =1       =1,  ≠  
                         [                            ] T
                           T      (  )  T       (  )  T  , then we obtain
               Let       (  ) =    (  )  (    (  ))  · · ·  (    (  ))
                                  1                 
                               
                            ∑
                                                         21 T
                                           11 T
                                                                                               −1 41
                                                                                           41 T
                                                −1 11
                                                                                       −1
                                                                      −1
                                                                          31 T
                                                              −1 21
                                                                               −1 31
                                T
                 ¤
                   (  (  ),       ) ≤     (  )[Γ 0       + (Γ ) P Γ       + (Γ ) R Γ       +    (Γ ) R Γ       +    (Γ ) R Γ     
                                                             
                                                                              
                                                                                                 
                                  
                                                                                              
                                               
                                                                                 
                                                                
                                                    
                                                                                         3
                                                                        2
                              =1
                             −1  51 T  −1 51  −1   61 T ˜ −1 61  71 T ˇ −1 71  81 T ˆ −1 81
                          +    (Γ ) R Γ    +     (Γ ) R Γ    + (Γ ) R Γ (Γ ) R Γ ]      (  )
                               4                    ,  +1                                                
                               
                            ∑
                                T
                          =       (  )Π            (  ),
                                  
                              =1
                                                          ˇ
                          ˜
                                          ˆ
               where Γ 0  = Ξ      (        1), Γ 0  = Ξ      (        2), Γ 0  = Ξ      (        3).
                                                          
                                          ∑   
               Therefore, if Π      < 0 and −Q    +          (ℎ)Q      < 0, the interconnected semi-Markovian control system (10)
                                              =1
               with partially accessible TRs and dynamic METM is stochastically stable. Considering the partially accessible
               transition rates, we will get the corresponding conclusion from the following three cases.
               Case 1. If  ∧   ,    ≠ ∅ and  ∧   ,      ≠ ∅ ,    ∈  ∧   ,    , denote       =  ∑   ∈ ∧   ,            (ℎ) . Since  ∧   ,      ≠ ∅ , then one
               derives that       < 0 , thus  ∑             (ℎ)P      can be presented as
                                        =1
                          
                       ∑               ∑      ∑               ∑                 ∑
                                                                                             (ℎ)
                                  (ℎ)P      = (  +  )        (ℎ)P      =          (ℎ)P      −        P      .  (25)
                                       ∧      ∧               ∧                 ∧     −     
                          =1            ∈    ,      ∈    ,        ∈    ,         ∈    ,    
                                              (ℎ)  ∧        ∑               (ℎ)        ∧
               Obviously, there exists 0 ≤  ≤ 1(   ∈    ,     ) and  ∧   = 1. So for ∀   ∈    ,     , there is
                                       −                        ∈    ,      −     
                                      
                                   ∑              ∑           (ℎ)  ∑
                                              (ℎ)P      =   (             (ℎ)(P      − P      )).      (26)
                                                  ∧    −       ∧
                                     =1           ∈    ,        ∈    ,  
   69   70   71   72   73   74   75   76   77   78   79