Page 73 - Read Online
P. 73

Tan et al. Complex Eng Syst 2023;3:6  I http://dx.doi.org/10.20517/ces.2023.10   Page 11 of 23


               According to Lemma 1, one further comes to







                            ∫      T             T                   T       T       T  T ˜ −1
                                                                         ˜ −1
                                         
                        −        ¤    (  )R    ¤    (  )     ≤    (  )Ξ            (  ) + (1 −       )   S    R S    1 +          S R S       2 ,  (24)
                                                                            
                                    
                                                   
                                                                                            
                                                                                          
                                                                               
                                                                                     2
                                                                     1
                               −     
               where
                                 [                                      ]
                           T       T     T           T           T     T
                             (  ) =    (  )     (   −       (  ))     (   −       )  2   1    2   2    ,
                                                       
                             
                                    
                                           
                                11                    
                                Ξ
                                      ∗   ∗    ∗    ∗  
                                21    22              
                                Ξ       Ξ       ∗  ∗  ∗ 
                                 31   32  33          
                          Ξ      = Ξ       Ξ       Ξ       ∗  ∗  ,
                                 41   42  43   44     
                               Ξ    Ξ    Ξ    Ξ     ∗ 
                                                        
                                51  Ξ 52  Ξ 53  Ξ 54  Ξ 55 
                                Ξ
                                                            
                          Ξ 11  = −4(1 +       )R    , Ξ 21  = −2(1 +       )R    − S 1   − S 2   − S 3   − S 4   ,
                               
                                                
                          Ξ 22  = −2(4 +       )R    − 2S 1   + 2S 2   − 2S 3   + 2S 4   , Ξ 31  = −S 1   − S 2   + S 3   + S 4   ,
                               
                                                                       
                          Ξ 32  = −2(2 −       )R    + S 1   − S 2   − S 3   + S 4   , Ξ 33  = −4(2 −       )R    , Ξ 41  = −S 3   − S 4   ,
                                                                                     
                               
                                                                   
                                                                     44
                          Ξ 42  = S 3   − S 4   + 3(2 −       )R    , Ξ 43  = 3(2 −       )R    , Ξ       = −3(2 −       )R    ,
                               
                                                         
                           51              52                    53        54       55
                          Ξ       = 3(1 +       )R    , Ξ       = −S 2   + 3(1 +       )R    , Ξ       = −S 4   , Ξ       = S 4   , Ξ       = −3(1 +       )R    .
               And
                              T
                                     
                             ¤    (  )R    ¤    (  )
                                
                                                                    
                                            ∑                     ∑
                                                                          (  )  T
                             = (A            (  ) + B                (   −       (  )) + B              (  ))
                                                                               
                                              =1                    =1
                                                                     
                                            ∑                     ∑
                                                                           (  )
                             R    (A            (  ) + B                (   −       (  )) + B              (  ))
                                                                               
                                                     
                                               =1                   =1
                                                                                     
                                          ∑                         ∑             ∑
                                T    T                    T                 T  T
                             +2   (  )A R     G              (  ) + 2   (   −       (  ))           B R     G              (  )
                                                                                 
                                                            
                                         
                                  
                                           =1,  ≠                     =1           =1,  ≠  
                                                                                       
                               ∑               T     ∑              ∑               ∑
                                                T
                                         T
                                                                         T
                             +2   (    (  )  (  ))     B R     G              (  ) +     (  )G T  R     G              (  ),
                                                                                    
                                 =1                   =1,  ≠         =1,  ≠          =1,  ≠  
   68   69   70   71   72   73   74   75   76   77   78