Page 68 - Read Online
P. 68

Page 6 of 23                     Tan et al. Complex Eng Syst 2023;3:6  I http://dx.doi.org/10.20517/ces.2023.10


               Lemma 1( [38] ): For a given scalar       ∈ (0, 1), the continuous function       (  ) ∈ (0,       ] and ¤    (  ) : [−      , 0) →
                                                                                            
               R , there exist positive symmetric matrices R    ∈ R       ×       and S    ∈ R 2      ×2       to make the inequality hold
                      
                                    ∫    
                                                                   T ˜
                                          T
                                                          T ˜
                                                                              T
                                                  
                                         ¤    (  )R    ¤    (  )     ≥    R 1      1 +    R 2      2 + 2   S       2 ,  (12)
                                            
                                                          1
                                                                              1
                                                                   2
                                       −     
               where
                           ˜
                                                  ˜ −1
                                ˜
                                           ˜
                                                                     ˜
                                                              ˜
                                                                                  ˜
                                                                          T ˜ −1
                                                      T
                                                         ˜
                          R 1   = R    + (1 −       )(R    − S    R S ), R 2   = R    +       (R    − S R S    ), R    =         {R    , 3R    },
                                                                              
                                                    
                                                                            
                                                        
                               [                          ]      [                     ]
                                         (   −       (  )) −       (   −       )        (  ) −       (   −       (  )
                             1 =                           ,    2 =                     ,
                                      (   −       (  )) +       (   −       ) − 2   1          (  ) +       (   −       (  )) − 2   2  
                               [       ]          ∫                          ∫    −      (  )
                               S 1    S 2      1                        1
                          S    =        ,    1   =            (  )    ,    2   =          (  )    .
                               S 3    S 4           (  )    −      (  )        −       (  )    −     
               Lemma 2( [39,40] ): For a real scalar       > 0, the matrices       > 0,         > 0, the following inequality holds
                                                                  2
                                          −              −1         ≤ −2              +          ,    ∈   .  (13)
                                                                    
               3. MAIN RESULTS
               Our purpose is to co-design the memory controller (9) and dynamic METM (4) so that system (10) with
               partially accessible transition rates is stochastically stable. By utilizing the Lyapunov function method, some
               sufficient conditions that insure the stochastic stability of the interconnected semi-Markovian system (10) are
               given. Then, a controller design scheme based on LMI is given in Theorem 2.
               Theorem 1. For given positive real number       > 0,       > 0,    > 0,    0 > 0,         > 0 (    = 1, 2, 3, · · · ,    + 3),
               and       ∈ (0, 1), the interconnected semi-Markovian jump control system (10) is said to be randomly stable
               with partially accessible transition rates and dynamic METM if there are positive symmetric matrices P      > 0,
                                                         
               Q      > 0, Q    > 0, R    > 0, Ω    > 0, and matrices    , S 1  , S 2  , S 3   and S 4   with proper dimensions, such that the
                                                           
               following matrix inequalities hold:
               Case 1. If  ∧   ,    ≠ ∅ and  ∧   ,      ≠ ∅,    ∈  ∧   ,    , for ∀   ∈  ∧   ,     , we have
                         ˜                                                             
                         Ξ
                               ∗     ∗     ∗       ∗      ∗     · · ·   ∗       ∗    ∗  
                         11    ˇ                                                       
                        Γ       −P       ∗  ∗      ∗      ∗     · · ·   ∗       ∗    ∗ 
                          21                                                           
                        Γ       0  −R      ∗       ∗      ∗     · · ·   ∗       ∗    ∗ 
                          31                                                           
                        Γ      0     0   −     2 R     ∗  ∗     · · ·   ∗       ∗    ∗ 
                                                                                       
                         41    0     0     0    −     3 R     ∗  · · ·  ∗       ∗    ∗  
                         Γ
                                                                                                     (14)
                         51    0     0     0       0            · · ·   ∗       ∗    ∗   < 0,
                         Γ
                                                        −     4 R                      
                          .    .     .     .       .       .    .       .       .    .  
                         .     .     .     .       .       .     .      .       .
                         .     .     .     .       .       .     .      .       .    . 
                                                                                      . 
                         61                                                            
                        Γ       0    0     0       0      0     · · ·  −     ,  +3 R     ∗  ∗ 
                          71                                                           
                                                                                 ˇ
                        Γ      0     0     0       0      0     · · ·   0     −R     ∗ 
                                                                                       
                         Γ 81  0     0     0       0      0     · · ·   0       0   −R   
                                                                                       ˆ 
                                                                                       
                                                  ∑
                                            −Q    +           (ℎ)(Q      − Q      ) < 0,               (15)
                                                   ∧
                                                   ∈    ,  
   63   64   65   66   67   68   69   70   71   72   73