Page 71 - Read Online
P. 71

Tan et al. Complex Eng Syst 2023;3:6  I http://dx.doi.org/10.20517/ces.2023.10    Page 9 of 23


               In addition, the other scalars are given as follows


                             
                           ∑        T  T
                       21
                      ˜
                     Ξ       =  (   ) B P      − 2(1 +       )R    − S 1   − S 2   − S 3   − S 4   ,
                                    
                                        
                             =1
                                                                  ˜
                      ˜
                     Ξ 22  = −2(4 +       )R    − 2S 1   + 2S 2   − 2S 3   + 2S 4   + Ω    , Ξ 31  = −S 1   − S 2   + S 3   + S 4   ,
                                                                       
                           
                                                          ˜
                      ˜
                     Ξ 32  = −2(2 −       )R    + S 1   − S 2   − S 3   + S 4   , Ξ 33  = −Q      − 4(2 −       )R    ,
                                                               
                           
                      ˜
                                                              ˜
                                                                              ˜
                     Ξ 41  = −S 3   − S 4   , Ξ ˜ 42  = S 3   − S 4   + 3(2 −       )R    , Ξ 43  = 3(2 −       )R    , Ξ 44  = −3(2 −       )R    ,
                           
                                                                                   
                                         
                                                                   
                                                           ˜
                      ˜
                                     ˜
                     Ξ 51  = 3(1 +       )R    , Ξ 52  = −S 2   + 3(1 +       )R    , Ξ 55  = −3(1 +       )R    ,
                                                                
                           
                                          
                             1
                               T
                                                                          ˜
                                        ˜
                                  T
                                                     ˜
                                                                  T
                                                                    T
                      ˜
                     Ξ 61  = (   ) B P      , Ξ 66  = −   0    1 Ω    , Ξ   +5,1  = (   ) B P      , Ξ   +5,  +5  = −   0       Ω    ,
                                 
                                                                   
                           
                                                                        
                                             
                                      
                                                          
                                                                               
                           [                             ]
                       11    T
                     Γ       = G         P       0 0 0 0 0 · · · 0 ,
                      ˇ
                                                     −1
                                          −1
                                  −1
                     P      = −(   − 1)         {   P      , · · · ,    P      ,   ≠   , · · · ,    −1  P      },
                                            1          1             1
                               [         ∑                                     ]
                                                                               
                                                                 1
                       21
                     Γ       =       R    A       B                       0 0 0 B               · · ·  B               ,
                                             =1
                               [                          ]
                       31
                     Γ       =       R    A       0 0 0 0 0 · · · 0 ,
                               [       ∑                          ]
                                               
                       41
                     Γ       =       R    0 B                    0 0 0 0 · · · 0 ,
                                          =1
                               [                    1        ]
                       51
                     Γ       =       R    0 0 0 0 0 B               · · · 0 ,
                               [                             ]
                       61
                                                             
                     Γ       =       R    0 0 0 0 0 0 · · ·  B               ,
                               [                          ]
                       71
                     Γ       =       R    G         0 0 0 0 0 · · · 0 ,
                      ˇ
                                                               −1
                                                                                                −1
                                 −1
                     R    = −(   − 1)         {(1 +      2 +      3 + · · · +      ,  +3 ) R 1 , · · · , (1 +      2 +      3 + · · · +      ,  +3 ) R    ,   ≠   ,
                                                  −1
                     · · · , (1 +      2 +      3 + · · · +      ,  +3 ) R    },
                              0     S 1   + S 3    −S 1   + S 3    −S 3    0  0 · · · 0 
                                                                             
                                                                             
                       81     0     S 2   + S 4    −S 2   + S 4    −S 4    0  0 · · · 0
                     Γ       =                                                ,
                           S 1   + S 3    −S 1   + S 3    0  0  −S 3    0 · · · 0
                                                                             
                            S 2   + S 4    −S 2   + S 4    0  0  −S 4    0 · · · 0
                                                                             
                                                    −1
                                      −1
                                                                    −1
                                                           −1
                      ˆ
                     R    =         {−(1 −       ) R    , −3(1 −       ) R    , −   R    , −3   R    }.
                                                                      
                                                             
               Proof: Define the following Lyapunov-Krasovskii functional   (  (  ),       ):
                                            
                                         ∑
                                (  (  ),       ) =  [   1 (      (  ),       ) +    2 (      (  ),       ) +    3 (      (  ),       ) +    4 (      (  ),       )],  (20)
                                           =1
               where
                                              T
                                    1 (      (  ),       ) =    (  )P    (      )      (  ),
                                                
                                             ∫                      ∫  0  ∫    
                                                   T
                                                                             T
                                    2 (      (  ),       ) =     (  )Q    (      )      (  )     +     (  )Q          (  )        ,
                                                                               
                                                     
                                                −                    −         +  
                                                ∫  0  ∫    
                                                         T
                                                                 
                                    3 (      (  ),       ) =        ¤    (  )R    ¤    (  )        ,
                                                           
                                                 −         +  
                                             1  2
                                    4 (      (  ),       ) =     (  ).
                                                  
                                             2
               According to Definition 1, we can get
   66   67   68   69   70   71   72   73   74   75   76