Page 251 - Read Online
P. 251

Page 16 of 17       Cabral et al. Microstructures 2023;3:2023040  https://dx.doi.org/10.20517/microstructures.2023.39

                    electron microscopy. Appl Phys Lett 2016;109:201601.  DOI
               57.       Zhu Y, Wang S, Li B, et al. Twist-to-untwist evolution and cation polarization behavior of hybrid halide perovskite nanoplatelets
                    revealed by cryogenic transmission electron microscopy. J Phys Chem Lett 2021;12:12187-95.  DOI
               58.       Chen Z, Wang X, Ringer SP, Liao X. Manipulation of nanoscale domain switching using an electron beam with omnidirectional
                    electric field distribution. Phys Rev Lett 2016;117:027601.  DOI
               59.       Chen Z, Li F, Huang Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci Adv 2020;6:eabc7156.
                    DOI  PubMed  PMC
               60.       Chen Z, Huang Q, Wang F, Ringer SP, Luo H, Liao X. Stress-induced reversible and irreversible ferroelectric domain switching.
                    Appl Phys Lett 2018;112:152901.  DOI
               61.       Chen Z, Hong L, Wang F, et al. Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain
                    structures. Phys Rev Lett 2017;118:017601.  DOI
               62.       Huang Q, Yang J, Chen Z, et al. Formation of head/tail-to-body charged domain walls by mechanical stress. ACS Appl Mater
                    Interfaces 2023;15:2313-8.  DOI
               63.       Taheri ML, Stach EA, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy.
                    Ultramicroscopy 2016;170:86-95.  DOI  PubMed  PMC
               64.       Fan Z, Zhang L, Baumann D, et al. In situ transmission electron microscopy for energy materials and devices. Adv Mater
                    2019;31:e1900608.  DOI
               65.       Deng Y, Zhang R, Pekin TC, et al. Functional materials under stress: in situ TEM observations of structural evolution. Adv Mater
                    2020;32:e1906105.  DOI
               66.       Muller DA, Kirkland EJ, Thomas MG, Grazul JL, Fitting L, Weyland M. Room design for high-performance electron microscopy.
                    Ultramicroscopy 2006;106:1033-40.  DOI  PubMed
               67.       Ophus C, Ciston J, Nelson CT. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron
                    microscopies from image pairs with orthogonal scan directions. Ultramicroscopy 2016;162:1-9.  DOI  PubMed
               68.       Jones L, Nellist PD. Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc
                    Microanal 2013;19:1050-60.  DOI  PubMed
               69.       Schnedler M, Weidlich PH, Portz V, Weber D, Dunin-Borkowski RE, Ebert P. Correction of nonlinear lateral distortions of scanning
                    probe microscopy images. Ultramicroscopy 2014;136:86-90.  DOI  PubMed
               70.       Berkels B, Binev P, Blom DA, Dahmen W, Sharpley RC, Vogt T. Optimized imaging using non-rigid registration. Ultramicroscopy
                    2014;138:46-56.  DOI  PubMed
               71.       Berkels B, Liebscher CH. Joint non-rigid image registration and reconstruction for quantitative atomic resolution scanning
                    transmission electron microscopy. Ultramicroscopy 2019;198:49-57.  DOI  PubMed
               72.       Jones L, Yang H, Pennycook TJ, et al. Smart align - a new tool for robust non-rigid registration of scanning microscope data. Adv
                    Struct Chem Imaging 2015;1:8.  DOI
               73.       Ihara S, Saito H, Yoshinaga M, Avala L, Murayama M. Deep learning-based noise filtering toward millisecond order imaging by
                    using scanning transmission electron microscopy. Sci Rep 2022;12:13462.  DOI  PubMed  PMC
               74.       Sang X, LeBeau JM. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior
                    knowledge. Ultramicroscopy 2014;138:28-35.  DOI  PubMed
               75.       Dycus JH, Harris JS, Sang X, et al. Accurate nanoscale crystallography in real-space using scanning transmission electron
                    microscopy. Microsc Microanal 2015;21:946-52.  DOI
               76.       Borisevich A, Ovchinnikov OS, Chang HJ, et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO  from Z-
                                                                                                    3
                    contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 2010;4:6071-9.  DOI
               77.       Zuo JM, Shah AB, Kim H, Meng Y, Gao W, Rouviére JL. Lattice and strain analysis of atomic resolution Z-contrast images based on
                    template matching. Ultramicroscopy 2014;136:50-60.  DOI  PubMed
               78.       Kirkland EJ, Loane RF, Silcox J. Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy
                    1987;23:77-96.  DOI
               79.      Barthel J. Dr. Probe: A software for high-resolution STEM image simulation. Ultramicroscopy 2018;193:1-11.  DOI  PubMed
               80.       Lazić I, Bosch EGT. Chapter three -  analytical review of direct stem imaging techniques for thin samples. Adv Imaging Electron Phys
                    2017;199:75-184.  DOI
               81.       Sang X, Oni AA, LeBeau JM. Atom column indexing: atomic resolution image analysis through a matrix representation. Microsc
                    Microanal 2014;20:1764-71.  DOI  PubMed
               82.       Nord M, Vullum PE, MacLaren I, Tybell T, Holmestad R. Atomap: a new software tool for the automated analysis of atomic
                    resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imaging 2017;3:9.  DOI  PubMed  PMC
               83.       Backer A, van den Bos KHW, Van den Broek W, Sijbers J, Van Aert S. StatSTEM: an efficient approach for accurate and precise
                    model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy 2016;171:104-16.  DOI  PubMed
               84.       Zhang Q, Zhang LY, Jin CH, Wang YM, Lin F. CalAtom: a software for quantitatively analysing atomic columns in a transmission
                    electron microscope image. Ultramicroscopy 2019;202:114-20.  DOI
               85.       Wang Y, Salzberger U, Sigle W, Eren Suyolcu Y, van Aken PA. Oxygen octahedra picker: a software tool to extract quantitative
                    information from STEM images. Ultramicroscopy 2016;168:46-52.  DOI
               86.       Du H. DMPFIT: a tool for atomic-scale metrology via nonlinear least-squares fitting of peaks in atomic-resolution TEM images.
   246   247   248   249   250   251   252   253   254   255   256