Page 249 - Read Online
P. 249

Page 14 of 17       Cabral et al. Microstructures 2023;3:2023040  https://dx.doi.org/10.20517/microstructures.2023.39

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Covaci C, Gontean A. Piezoelectric energy harvesting solutions: a review. Sensors 2020;20:3512.  DOI  PubMed  PMC
               2.       Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021;80:105567.
                    DOI
               3.       Shung KK, Cannata JM, Zhou QF. Piezoelectric materials for high frequency medical imaging applications: a review. J Electroceram
                    2007;19:141-7.  DOI
               4.       Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB. A review on piezoelectric materials and their applications.
                    Cryst Res Technol 2023;58:2200130.  DOI
               5.       Iqbal M, Nauman MM, Khan FU, et al. Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for
                    microsystems applications: a contributed review. Int J Energy Res 2021;45:65-102.  DOI
               6.       Li F, Lin D, Chen Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17:349-54.  DOI
               7.       Li F, Cabral MJ, Xu B, et al. Giant piezoelectricity of Sm-doped Pb(Mg Nb )O -PbTiO  single crystals. Science 2019;364:264-8.
                                                                              3
                                                                         3
                                                                   1/3
                                                                      2/3
                    DOI
               8.       Zhang S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides.
                    Microstructures 2022;3:2023003.  DOI
               9.       Batson PE, Dellby N, Krivanek OL. Sub-angstrom resolution using aberration corrected electron optics. Nature 2002;418:617-20.
                    DOI
               10.       Krivanek O, Dellby N, Lupini A. Towards sub-Å electron beams. Ultramicroscopy 1999;78:1-11.  DOI
               11.       Hetherington C. Aberration correction for TEM. Mater Today 2004;7:50-5.  DOI
               12.       Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann HJ. Atomic-scale imaging of individual dopant atoms and clusters in highly
                    n-type bulk Si. Nature 2002;416:826-9.  DOI  PubMed
               13.       Voyles PM, Grazul JL, Muller DA. Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 2003;96:251-73.
                    DOI  PubMed
               14.       Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018;559:343-9.  DOI
               15.       Liu C, Cui J, Cheng Z, et al. Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-
                    centered-cubic solutions. Adv Mater 2023;35:e2209941.  DOI
               16.       Close R, Chen Z, Shibata N, Findlay SD. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via
                    differential phase contrast using electrons. Ultramicroscopy 2015;159 Pt 1:124-37.  DOI  PubMed
               17.      Krivanek OL, Lovejoy TC, Dellby N, et al. Vibrational spectroscopy in the electron microscope. Nature 2014;514:209-12.  DOI
               18.       de la Mata M, Molina SI. STEM tools for semiconductor characterization: beyond high-resolution imaging. Nanomaterials 2022;12:337.
                    DOI  PubMed  PMC
               19.       Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography
                    and beyond. Microsc Microanal 2019;25:563-82.  DOI  PubMed
               20.       Lin Y, Zhou M, Tai X, Li H, Han X, Yu J. Analytical transmission electron microscopy for emerging advanced materials. Matter
                    2021;4:2309-39.  DOI
               21.       Williams DB, Carter CB. Transmission electron microscopy. New York: Springer; 1996.  DOI
               22.       Lebeau JM, Stemmer S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.
                    Ultramicroscopy 2008;108:1653-8.  DOI  PubMed
               23.       LeBeau JM, Findlay SD, Allen LJ, Stemmer S. Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev
                    Lett 2008;100:206101.  DOI  PubMed
               24.       Muller DA, Nakagawa N, Ohtomo A, Grazul JL, Hwang HY. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in
                    SrTiO . Nature 2004;430:657-61.  DOI  PubMed
                        3
               25.       Fitting L, Thiel S, Schmehl A, Mannhart J, Muller DA. Subtleties in ADF imaging and spatially resolved EELS: a case study of low-
                    angle twist boundaries in SrTiO . Ultramicroscopy 2006;106:1053-61.  DOI  PubMed
                                        3
   244   245   246   247   248   249   250   251   252   253   254