Page 250 - Read Online
P. 250

Cabral et al. Microstructures 2023;3:2023040  https://dx.doi.org/10.20517/microstructures.2023.39  Page 15 of 17

               26.       Zhang W, Zhang X, Xu P, et al. Structure domains induced nonswitchable ferroelectric polarization in polar doubly cation-ordered
                    perovskites. Ceram Int 2022;48:30853-8.  DOI
               27.       Campanini M, Erni R, Yang CH, Ramesh R, Rossell MD. Periodic giant polarization gradients in doped BiFeO  thin films. Nano Lett
                                                                                            3
                    2018;18:717-24.  DOI  PubMed
               28.       Shur VY, Akhmatkhanov AR, Baturin IS. Micro- and nano-domain engineering in lithium niobate. App Phys Rev 2015;2:040604.
                    DOI
               29.       Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, Kondo Y. Visualization of light elements at ultrahigh resolution by STEM
                    annular bright field microscopy. Microsc Microanal 2009;15:164-5.  DOI
               30.       Findlay SD, Shibata N, Sawada H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron
                    microscopy. Appl Phys Lett 2009;95:191913.  DOI
               31.       Ge  W,  Beanland  R,  Alexe  M,  Ramasse  Q,  Sanchez  AM.  180°  head-to-head  flat  domain  walls  in  single  crystal  BiFeO .
                                                                                                         3
                    Microstructures 2023;3:2023026.  DOI
               32.       Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E. Direct imaging of hydrogen-atom columns in a crystal by annular
                    bright-field electron microscopy. Nat Mater 2011;10:278-81.  DOI
               33.       Okunishi E, Sawada H, Kondo Y. Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning
                    transmission electron microscopy (STEM). Micron 2012;43:538-44.  DOI
               34.       Vogel A, Sarott MF, Campanini M, Trassin M, Rossell MD. Monitoring electrical biasing of Pb(Zr Ti )O  ferroelectric thin films
                                                                                     0.2
                                                                                       0.8
                                                                                          3
                    in situ by DPC-stem imaging. Materials 2021;14:4749.  DOI  PubMed  PMC
               35.       Yücelen E, Lazić I, Bosch EGT. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the
                    limit of contrast and resolution. Sci Rep 2018;8:2676.  DOI  PubMed  PMC
               36.      Rose H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 1977;2:251-67.  DOI  PubMed
               37.       Chapman JN, Batson PE, Waddell EM, Ferrier RP. The direct determination of magnetic domain wall profiles by differential phase
                    contrast electron microscopy. Ultramicroscopy 1978;3:203-13.  DOI
               38.       Shibata N, Findlay SD, Kohno Y, Sawada H, Kondo Y, Ikuhara Y. Differential phase-contrast microscopy at atomic resolution. Nat
                    Phys 2012;8:611-5.  DOI
               39.       Lazić I, Bosch EGT, Lazar S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy
                    2016;160:265-80.  DOI  PubMed
               40.       Kumar A, Baker JN, Bowes PC, et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor
                    ferroelectrics. Nat Mater 2021;20:62-7.  DOI
               41.       Pennycook TJ, Lupini AR, Yang H, Murfitt MF, Jones L, Nellist PD. Efficient phase contrast imaging in STEM using a pixelated
                    detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy 2015;151:160-7.  DOI  PubMed
               42.       Yang H, Pennycook TJ, Nellist PD. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of
                    imaging conditions. Ultramicroscopy 2015;151:232-9.  DOI  PubMed
               43.       Maclaren I, Macgregor TA, Allen CS, Kirkland AI. Detectors - the ongoing revolution in scanning transmission electron microscopy
                    and why this important to material characterization. APL Mater 2020;8:110901.  DOI
               44.       Tate MW, Purohit P, Chamberlain D, et al. High dynamic range pixel array detector for scanning transmission electron microscopy.
                    Microsc Microanal 2016;22:237-49.  DOI
               45.       Chen Z, Jiang Y, Shao YT, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science
                    2021;372:826-31.  DOI
               46.       Lozano JG, Martinez GT, Jin L, Nellist PD, Bruce PG. Low-dose aberration-free imaging of Li-rich cathode materials at various
                    states of charge using electron ptychography. Nano Lett 2018;18:6850-5.  DOI  PubMed
               47.       Chen Z, Odstrcil M, Jiang Y, et al. Mixed-state electron ptychography enables sub-Angstrom resolution imaging with picometer
                    precision at low dose. Nat Commun 2020;11:2994.  DOI  PubMed  PMC
               48.       Zeltmann SE, Müller A, Bustillo KC, et al. Patterned probes for high precision 4D-STEM bragg measurements. Ultramicroscopy
                    2020;209:112890.  DOI
               49.       Mahr C, Müller-Caspary K, Grieb T, Krause FF, Schowalter M, Rosenauer A. Accurate measurement of strain at interfaces in 4D-
                    STEM: a comparison of various methods. Ultramicroscopy 2021;221:113196.  DOI  PubMed
               50.       Tsuda K, Yasuhara A, Tanaka M. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase
                    of BaTiO  by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods.
                          3
                    Appl Phys Lett 2013;103:082908.  DOI
               51.       Mun J, Peng W, Roh CJ, et al. In situ cryogenic HAADF-STEM observation of spontaneous transition of ferroelectric polarization
                    domain structures at low temperatures. Nano Lett 2021;21:8679-86.  DOI
               52.       Zheng H, Zhu Y. Perspectives on in situ electron microscopy. Ultramicroscopy 2017;180:188-96.  DOI
               53.       Ross FM. Opportunities and challenges in liquid cell electron microscopy. Science 2015;350:aaa9886.  DOI  PubMed
               54.       Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH. Electron-water interactions and implications for liquid cell
                    electron microscopy. J Phys Chem C 2014;118:22373-82.  DOI
               55.       Nukala P, Ahmadi M, Antoja-lleonart J, et al. In situ heating studies on temperature-induced phase transitions in epitaxial
                    Hf Zr O /La  Sr  MnO  heterostructures. Appl Phys Lett 2021;118:062901.  DOI
                      0.5  0.5  2  0.67  0.33  3
               56.       Xu W, Bowes PC, Grimley ED, Irving DL, Lebeau JM. In-situ real-space imaging of single crystal surface reconstructions via
   245   246   247   248   249   250   251   252   253   254   255