Page 252 - Read Online
P. 252

Cabral et al. Microstructures 2023;3:2023040  https://dx.doi.org/10.20517/microstructures.2023.39  Page 17 of 17

                    Nanomanuf Metrol 2022;5:101-11.  DOI
               87.       Sang X, Grimley ED, Niu C, Irving DL, Lebeau JM. Direct observation of charge mediated lattice distortions in complex oxide solid
                    solutions. Appl Phys Lett 2015;106:061913.  DOI
               88.       Oni AA, Sang X, Raju SV, et al. Large area strain analysis using scanning transmission electron microscopy across multiple images.
                    Appl Phys Lett 2015;106:011601.  DOI
               89.       Hytch MJH, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs.
                    Ultramicroscopy 1998;74:131-46.  DOI
               90.       Rouviere J, Béché A, Martin Y, Denneulin T, Cooper D. Improved strain precision with high spatial resolution using nanobeam
                    precession electron diffraction. Appl Phys Lett 2013;103:241913.  DOI
               91.       Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv
                    Mater 2017;29:1701824.  DOI
               92.       Jeong IK, Darling TW, Lee JK, et al. Direct observation of the formation of polar nanoregions in Pb(Mg Nb )O  using neutron pair
                                                                                       1/3
                                                                                             3
                                                                                          2/3
                    distribution function analysis. Phys Rev Lett 2005;94:147602.  DOI
               93.       Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical
                    lead-free materials. Adv Funct Mater 2019;29:1902911.  DOI
               94.      Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys 2005;38:R123.  DOI
               95.       Moore K, O’Connell EN, Griffin SM, et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric
                    multiferroic thin film. ACS Appl Mater Interfaces 2022;14:5525-36.  DOI  PubMed  PMC
               96.      de la Peña F, Prestat E, Fauske VT, et al. Hyperspy/hyperspy: release v1.7.3. 2022.  DOI
               97.       O’Connell EN, Moore K, McFall E, et al. TopoTEM: a python package for quantifying and visualizing scanning transmission
                    electron microscopy data of polar topologies. Microsc Microanal 2022;28:1444-52.  DOI
               98.       Cabral  MJ,  Zhang  S,  Dickey  EC,  Lebeau  JM.  Gradient  chemical  order  in  the  relaxor  Pb(Mg Nb )O .  Appl  Phys  Lett
                                                                                       1/3  2/3  3
                    2018;112:082901.  DOI
               99.       Xu M, Kumar A, LeBeau JM. Correlating local chemical and structural order using geographic information systems-based spatial
                    statistics. Ultramicroscopy 2023;243:113642.  DOI  PubMed
               100.      Savitzky BH, Zeltmann SE, Hughes LA, et al. py4DSTEM: a software package for four-dimensional scanning transmission electron
                    microscopy data analysis. Microsc Microanal 2021;27:712-43.  DOI
               101.      Savitzky BH, Hughes L, Bustillo KC, et al. py4DSTEM: open source software for 4D-STEM data analysis. Microsc Microanal
                    2019;25:124-5.  DOI
               102.      Wang  S,  Eldred  TB,  Smith  JG,  Gao  W.  AutoDisk:  automated  diffraction  processing  and  strain  mapping  in  4D-STEM.
                    Ultramicroscopy 2022;236:113513.  DOI  PubMed
   247   248   249   250   251   252   253   254   255   256   257