Page 218 - Read Online
P. 218

Page 30 of 30         Guo et al. Microstructures 2023;3:2023038  https://dx.doi.org/10.20517/microstructures.2023.30

                    perovskites in acidic media. ACS Catal 2019;9:8561-74.  DOI
               114.      Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst
                    materials for selective seawater electrolysis. ChemSusChem 2016;9:962-72.  DOI  PubMed
               115.      You H, Wu D, Si D, et al. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater
                    splitting. J Am Chem Soc 2022;144:9254-63.  DOI
               116.      Enkhtuvshin E, Kim KM, Kim Y, et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co
                    layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J Mater Chem A 2021;9:27332-46.  DOI
               117.      Zhang K, Zou R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small
                    2021;17:e2100129.  DOI  PubMed
               118.      Ibrahim KB, Tsai M, Chala SA, et al. A review of transition metal-based bifunctional oxygen electrocatalysts. J Chin Chem Soc
                    2019;66:829-65.  DOI
               119.      Wang J, Zhao C, Liu J, et al. Composing atomic transition metal sites for high-performance bifunctional oxygen electrocatalysis in
                    rechargeable zinc-air batteries. Particuology 2023;77:146-52.  DOI
               120.      Yu L, Zhu Q, Song S, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat
                    Commun 2019;10:5106.  DOI  PubMed  PMC
               121.      Kuang Y, Kenney MJ, Meng Y, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc Natl
                    Acad Sci USA 2019;116:6624-9.  DOI  PubMed  PMC
               122.      Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis.
                    Adv Energy Mater 2018;8:1801926.  DOI
               123.      Liu J, Liu X, Shi H, et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with
                    enhanced activity for overall seawater splitting. Appl Catal B 2022;302:120862.  DOI
               124.      Song Y, Xu B, Liao T, Guo J, Wu Y, Sun Z. Electronic structure tuning of 2D metal (Hydr)oxides nanosheets for electrocatalysis.
                    Small 2021;17:e2002240.  DOI  PubMed
               125.      Joo J, Kim T, Lee J, Choi SI, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv
                    Mater 2019;31:e1806682.  DOI  PubMed
               126.      Dutta A, Pradhan N. Developments of metal phosphides as efficient OER precatalysts. J Phys Chem Lett 2017;8:144-52.  DOI
                    PubMed
               127.      Tan L, Yu J, Wang C, et al. Partial sulfidation strategy to NiFe-LDH@FeNi S  heterostructure enable high-performance water/
                                                                       2 4
                    seawater oxidation. Adv Funct Mater 2022;32:2200951.  DOI
               128.      Zhang H, Geng S, Ouyang M, Yadegari H, Xie F, Riley DJ. A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous
                    nickel carbide@iron oxide network for seawater splitting. Adv Sci 2022;9:e2200146.  DOI  PubMed  PMC
               129.      Song HJ, Yoon H, Ju B, Lee D, Kim D. Electrocatalytic selective oxygen evolution of carbon-coated Na Co Fe P O  nanoparticles
                                                                                        2  1-x  x 2  7
                    for alkaline seawater electrolysis. ACS Catal 2020;10:702-9.  DOI
               130.      Guo J, Zheng Y, Hu Z, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat Energy
                    2023;8:264-72.  DOI
               131.      Kim J, Kim J, Jeong J, et al. Designing fluorine-free electrolytes for stable sodium metal anodes and high-power seawater batteries
                    via SEI reconstruction. Energy Environ Sci 2022;15:4109-18.  DOI
               132.      Bae H, Park J, Senthilkumar S, Hwang SM, Kim Y. Hybrid seawater desalination-carbon capture using modified seawater battery
                    system. J Power Sources 2019;410-11:99-105.  DOI
               133.      Budde-meiwes H, Drillkens J, Lunz B, et al. A review of current automotive battery technology and future prospects. J Aut Eng
                    2013;227:761-76.  DOI
   213   214   215   216   217   218   219   220   221   222   223