Page 214 - Read Online
P. 214

Page 26 of 30         Guo et al. Microstructures 2023;3:2023038  https://dx.doi.org/10.20517/microstructures.2023.30

               Writing-review & editing: Guo Y, Zheng X
               Writing-review & editing, supervision, and funding acquisition: Zheng X, Deng Y

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               This work was supported by the National Natural Science Foundation of China (52231008, 52177220) and
               the Key Research and Development Project of Hainan Province (ZDYF2022GXJS006).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       Helveston JP, He G, Davidson MR. Quantifying the cost savings of global solar photovoltaic supply chains. Nature 2022;612:83-7.
                    DOI  PubMed
               2.       Russo G. Renewable energy: wind power tests the waters. Nature 2014;513:478-80.  DOI  PubMed
               3.       Aziz MJ, Gayme DF, Johnson K, et al. A co-design framework for wind energy integrated with storage. Joule 2022;6:1995-2015.
                    DOI
               4.       Almora O, Baran D, Bazan GC, et al. Device performance of emerging photovoltaic materials (version 1). Adv Energy Mater
                    2021;11:2002774.  DOI
               5.       Zhang C, Wang H, Yu H, et al. Single-atom catalysts for hydrogen generation: rational design, recent advances, and perspectives. Adv
                    Energy Mater 2022;12:e2200875.  DOI
               6.       van Cresce A, Xu K. Aqueous lithium-ion batteries. Carbon Energy 2021;3:721-51.  DOI
               7.       Lopes PP, Stamenkovic VR. Past, present, and future of lead-acid batteries. Science 2020;369:923-4.  DOI  PubMed
               8.       Kim  J,  Lee  E,  Kim  H,  Johnson  C,  Cho  J,  Kim  Y.  Rechargeable  seawater  battery  and  its  electrochemical  mechanism.
                    ChemElectroChem 2015;2:328-32.  DOI
               9.       Kim Y, Lee W. Secondary seawater batteries. In: Seawater batteries. Green Energy and Technology. Singapore: Springer; 2022. pp.
                    91-293.  DOI
               10.       Mozaffari S, Nateghi MR. Recent advances in solar rechargeable seawater batteries based on semiconductor photoelectrodes. Top
                    Curr Chem 2022;380:28.  DOI  PubMed
               11.       Khan Z, Park SO, Yang J, et al. Binary N,S-doped carbon nanospheres from bio-inspired artificial melanosomes: a route to efficient
                    air electrodes for seawater batteries. J Mater Chem A 2018;6:24459-67.  DOI
               12.       Sun Q, Dai L, Luo T, Wang L, Liang F, Liu S. Recent advances in solid-state metal-air batteries. Carbon Energy 2023;5:e276.  DOI
               13.       Li Y, Lu J. Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett
                    2017;2:1370-7.  DOI
               14.       Rahman MA, Wang X, Wen C. High energy density metal-air batteries: a review. J Electrochem Soc 2013;160:A1759-71.  DOI
               15.       Zhang J, Zhang J, He F, et al. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nanomicro Lett
                    2021;13:65.  DOI  PubMed  PMC
               16.       Chen Y, Xu J, He P, et al. Metal-air batteries: progress and perspective. Sci Bull 2022;67:2449-86.  DOI
               17.       Galili N, Shemesh A, Yam R, et al. The geologic history of seawater oxygen isotopes from marine iron oxides.  Science
                    2019;365:469-73.  DOI
               18.       Gayen P, Saha S, Ramani V. Pyrochlores for advanced oxygen electrocatalysis. ACC Chem Res 2022;55:2191-200.  DOI  PubMed
               19.       Lv X, Wei W, Wang H, Huang B, Dai Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen
                    and oxygen electrode reactions: a computational study. Appl Catal B 2019;255:117743.  DOI
   209   210   211   212   213   214   215   216   217   218   219