Page 217 - Read Online
P. 217

Guo et al. Microstructures 2023;3:2023038  https://dx.doi.org/10.20517/microstructures.2023.30  Page 29 of 30

               83.       Manikandan P, Kishor K, Han J, Kim Y. Advanced perspective on the synchronized bifunctional activities of P2-type materials to
                    implement an interconnected voltage profile for seawater batteries. J Mater Chem A 2018;6:11012-21.  DOI
               84.       Kim S, Yang H, Jeong S, et al. Negative surface charge-mediated Fe Quantum dots with N-doped graphene/Ti C T  MXene as
                                                                                               3
                                                                                                2
                                                                                                  x
                    chlorine-resistance electrocatalysts for high performance seawater-based Al-air batteries. J Power Sources 2023;566:232923.  DOI
               85.       Le Z, Li W, Dang Q, et al. A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian
                    blue analogue cathode. J Mater Chem A 2021;9:8685-91.  DOI
               86.       Guo Y, Yang M, Xie RC, Compton RG. The oxygen reduction reaction at silver electrodes in high chloride media and the
                    implications for silver nanoparticle toxicity. Chem Sci 2020;12:397-406.  DOI  PubMed  PMC
               87.       Hasvold Ø, Henriksen H, Melv˦r E, et al. Sea-water battery for subsea control systems. J Power Sources 1997;65:253-61.  DOI
               88.       Li J, Wang N, Liu K, Duan J, Hou B. Efficient electrocatalytic H O  production in simulated seawater on ZnO/reduced graphene
                                                               2
                                                                 2
                    oxide nanocomposite. Colloids Surf A Physicochem Eng Asp 2023;668:131446.  DOI
               89.       Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev
                    2016;116:3594-657.  DOI  PubMed
               90.       Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015;44:2168-201.
                    DOI
               91.       Ryu JH, Park J, Park J, et al. Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater
                    batteries. Energy Stor Mater 2022;45:281-90.  DOI
               92.       Jin C, Nagaiah TC, Xia W, Bron M, Schuhmann W, Muhler M. Polythiophene-assisted vapor phase synthesis of carbon nanotube-
                    supported rhodium sulfide as oxygen reduction catalyst for HCl electrolysis. ChemSusChem 2011;4:927-30.  DOI  PubMed
               93.       Chen Y, Matanovic I, Weiler E, Atanassov P, Artyushkova K. Mechanism of oxygen reduction reaction on transition metal-nitrogen-
                    carbon catalysts: establishing the role of nitrogen-containing active sites. ACS Appl Energy Mater 2018;1:5948-53.  DOI
               94.       Gu W, Hu L, Li J, Wang E. Recent advancements in transition metal-nitrogen-carbon catalysts for oxygen reduction reaction.
                    Electroanalysis 2018;30:1217-28.  DOI
               95.       Zhao C, Ren D, Wang J, et al. Regeneration of single-atom catalysts deactivated under acid oxygen reduction reaction conditions. J
                    Energy Chem 2022;73:478-84.  DOI
               96.       Liu M, Li N, Cao S, et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative
                    oxygen electrocatalysis. Adv Mater 2022;34:e2107421.  DOI
               97.       Suh DH, Park SK, Nakhanivej P, Kim Y, Hwang SM, Park HS. Hierarchically structured graphene-carbon nanotube-cobalt hybrid
                    electrocatalyst for seawater battery. J Power Sources 2017;372:31-7.  DOI
               98.       Wu S, Liu X, Mao H, et al. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich
                    hierarchical heterogeneous assemblies. Appl Catal B 2023;330:122634.  DOI
               99.       Gao Z, Yang Q, Qiu P, et al. p-type plastic inorganic thermoelectric materials. Adv Energy Mater 2021;11:2100883.  DOI
               100.      Zhan Y, Ding Z, He F, et al. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction
                    in seawater-based electrolyte. Chem Eng J 2022;443:136456.  DOI
               101.      Li H, Kelly S, Guevarra D, et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat
                    Catal 2021;4:463-8.  DOI
               102.      Son M, Park J, Im E, et al. Sacrificial catalyst of carbothermal-shock-synthesized 1T-MoS  layers for ultralong-lifespan seawater
                                                                                2
                    battery. Nano Lett 2023;23:344-52.  DOI
               103.      Zhang Y, Park J, Senthilkumar ST, Kim Y. A novel rechargeable hybrid Na-seawater flow battery using bifunctional electrocatalytic
                    carbon sponge as cathode current collector. J Power Sources 2018;400:478-84.  DOI
               104.      Tu NDK, Park SO, Park J, Kim Y, Kwak SK, Kang SJ. Pyridinic-nitrogen-containing carbon cathode: efficient electrocatalyst for
                    seawater batteries. ACS Appl Energy Mater 2020;3:1602-8.  DOI
               105.      Zhang F, Yu L, Wu L, Luo D, Ren Z. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem
                    2021;3:485-98.  DOI
               106.      Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett
                    2019;4:933-42.  DOI
               107.      Vos JG, Wezendonk TA, Jeremiasse AW, Koper MTM. MnO /IrO  as selective oxygen evolution electrocatalyst in acidic chloride
                                                                x
                                                             x
                    solution. J Am Chem Soc 2018;140:10270-81.  DOI  PubMed  PMC
               108.      Kim S, Lee T, Han S, Lee C, Kim C, Yoon J. Ir  Fe  O   as a highly efficient electrode for electrochlorination in dilute chloride
                                                   0.11  0.25  0.64
                    solutions. J Ind Eng Chem 2021;102:155-62.  DOI
               109.      Kim Y, Harzandi AM, Lee J, Choi Y, Kim Y. Design of large-scale rectangular cells for rechargeable seawater batteries. Adv Sustain
                    Syst 2021;5:2000106.  DOI
               110.      Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J. Electrochemical chlorine evolution at rutile oxide (110)
                    surfaces. Phys Chem Chem Phys 2010;12:283-90.  DOI  PubMed
               111.      Komiya H, Shinagawa T, Takanabe K. Electrolyte engineering for oxygen evolution reaction over non-noble metal electrodes
                    achieving high current density in the presence of chloride ion. ChemSusChem 2022;15:e202201088.  DOI  PubMed  PMC
                                                       -  0
               112.      Zhao X, Wang Y, Shi Y, et al. Exploiting interfacial Cl /Cl  redox for a 1.8-V voltage plateau aqueous electrochemical capacitor. ACS
                    Energy Lett 2021;6:1134-40.  DOI
               113.      Vos JG, Liu Z, Speck FD, et al. Selectivity trends between oxygen evolution and chlorine evolution on iridium-based double
   212   213   214   215   216   217   218   219   220   221   222