Page 216 - Read Online
P. 216

Page 28 of 30         Guo et al. Microstructures 2023;3:2023038  https://dx.doi.org/10.20517/microstructures.2023.30

                    Phys 1999;59:42-8.  DOI
               51.      Senthilkumar ST, Go W, Han J, et al. Emergence of rechargeable seawater batteries. J Mater Chem A 2019;7:22803-25.  DOI
               52.       Prasad K, Venkatakrishnan N, Mathur P. Preliminary report on the performance characteristics of the magnesium-mercurous chloride
                    battery system. J Power Sources 1977;1:371-5.  DOI
               53.       Yu J, Li B, Zhao C, Zhang Q. Seawater electrolyte-based metal-air batteries: from strategies to applications. Energy Environ Sci
                    2020;13:3253-68.  DOI
               54.       Shinohara M, Araki E, Mochizuki M, Kanazawa T, Suyehiro K. Practical application of a sea-water battery in deep-sea basin and its
                    performance. J Power Sources 2009;187:253-60.  DOI
               55.       Liu Q, Yan Z, Wang E, Wang S, Sun G. A high-specific-energy magnesium/water battery for full-depth ocean application. Int J
                    Hydrog Energy 2017;42:23045-53.  DOI
               56.       Al-eggiely  AH,  Alguail  AA,  Gvozdenović  MM,  Jugović  BZ,  Grgur  BN.  Seawater  zinc/polypyrrole-air  cell  possessing
                    multifunctional charge-discharge characteristics. J Solid State Electrochem 2017;21:2769-77.  DOI
               57.       Jiao W, Fan Y, Huang C, Sanglin. Effect of modified polyacrylonitrile-based carbon fiber on the oxygen reduction reactions in
                    seawater batteries. Ionics 2018;24:285-96.  DOI
               58.       Zhang Q, Zhou Y, Dai W, et al. Chloride ion as redox mediator in reducing charge overpotential of aprotic lithium-oxygen batteries.
                    Batteries Supercaps 2021;4:232-9.  DOI
               59.       Kim Y, Kim G, Jeong S, et al. Large-scale stationary energy storage: seawater batteries with high rate and reversible performance.
                    Energy Stor Mater 2019;16:56-64.  DOI
               60.       Kim Y, Kim H, Park S, Seo I, Kim Y. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochim
                    Acta 2016;191:1-7.  DOI
               61.       Kim Y, Shin K, Jung Y, Lee W, Kim Y. Development of prismatic cells for rechargeable seawater batteries. Adv Sustain Syst
                    2022;6:2100484.  DOI
               62.       Son M, Park S, Kim N, Angeles AT, Kim Y, Cho KH. Simultaneous energy storage and seawater desalination using rechargeable
                    seawater battery: feasibility and future directions. Adv Sci 2021;8:e2101289.  DOI  PubMed  PMC
               63.       Kim Y, Jung J, Yu H, et al. Sodium biphenyl as anolyte for sodium-seawater batteries. Adv Funct Mater 2020;30:2001249.  DOI
               64.       Han J, Hwang SM, Go W, Senthilkumar S, Jeon D, Kim Y. Development of coin-type cell and engineering of its compartments for
                    rechargeable seawater batteries. J Power Sources 2018;374:24-30.  DOI
               65.       Xu Y, Lv H, Lu H, et al. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production.
                    Nano Energy 2022;98:107295.  DOI
               66.       Yu J, Zhao C, Liu J, Li B, Tang C, Zhang Q. Seawater-based electrolyte for zinc-air batteries. Green Chem Eng 2020;1:117-23.  DOI
               67.       Wang C, Yu Y, Niu J, et al. Recent progress of metal-air batteries - a mini review. App Sci 2019;9:2787.  DOI
               68.       Zhang T, Tao Z, Chen J. Magnesium-air batteries: from principle to application. Mater Horiz 2014;1:196-206.  DOI
               69.       Park S, Ligaray M, Kim Y, Chon K, Son M, Cho KH. Investigating the influence of catholyte salinity on seawater battery
                    desalination. Desalination 2021;506:115018.  DOI
               70.       Mamtani K, Jain D, Co AC, Ozkan US. Investigation of chloride poisoning resistance for nitrogen-doped carbon nanostructures as
                    oxygen depolarized cathode catalysts in acidic media. Catal Lett 2017;147:2903-9.  DOI
               71.       Kim Y, Kim J, Vaalma C, et al. Optimized hard carbon derived from starch for rechargeable seawater batteries. Carbon
                    2018;129:564-71.  DOI
               72.       Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen
                    electroreduction. Nat Catal 2021;4:615-22.  DOI
               73.       Millero FJ, Feistel R, Wright DG, Mcdougall TJ. The composition of standard seawater and the definition of the reference-
                    composition salinity scale. Deep Sea Res Part I Oceanogr Res Pap 2008;55:50-72.  DOI
               74.       Kim DH, Choi H, Hwang DY, et al. Reliable seawater battery anode: controlled sodium nucleation via deactivation of the current
                    collector surface. J Mater Chem A 2018;6:19672-80.  DOI
               75.       Liu Q, Pan Z, Wang E, An L, Sun G. Aqueous metal-air batteries: fundamentals and applications. Energy Stor Mater 2020;27:478-
                    505.  DOI
               76.       Kim D, Park J, Lee W, Choi Y, Kim Y. Development of rechargeable seawater battery module. J Electrochem Soc 2022;169:040508.
                    DOI
               77.       Arnold S, Wang L, Presser V. Dual-Use of seawater batteries for energy storage and water desalination. Small 2022;18:e2107913.
                    DOI  PubMed
               78.       Kim K, Hwang SM, Park J, Han J, Kim J, Kim Y. Highly improved voltage efficiency of seawater battery by use of chloride ion
                    capturing electrode. J Power Sources 2016;313:46-50.  DOI
               79.       Jung J, Hwang DY, Kristanto I, Kwak SK, Kang SJ. Deterministic growth of a sodium metal anode on a pre-patterned current
                    collector for highly rechargeable seawater batteries. J Mater Chem A 2019;7:9773-81.  DOI
               80.       Lee C, Jeon D, Park J, et al. Tetraruthenium polyoxometalate as an atom-efficient bifunctional oxygen evolution reaction/oxygen
                    reduction reaction catalyst and its application in seawater batteries. ACS Appl Mater Interfaces 2020;12:32689-97.  DOI
               81.       Kim J, Park J, Lee J, Lim W, Jo C, Lee J. Biomass-derived P, N self-doped hard carbon as bifunctional oxygen electrocatalyst and
                    anode material for seawater batteries. Adv Funct Mater 2021;31:2010882.  DOI
               82.      Kim J, Mueller F, Kim H, et al. Rechargeable-hybrid-seawater fuel cell. NPG Asia Mater 2014;6:e144.  DOI
   211   212   213   214   215   216   217   218   219   220   221