Page 121 - Read Online
P. 121

Page 20 of 25                           Hao et al. Soft Sci. 2025, 5, 39  https://dx.doi.org/10.20517/ss.2025.48

               absorption.


               (3) A coupling model that integrates temperature, electromagnetic parameters, and microcarrier dynamics
               needs to be established to explore charge transport pathways under extreme temperatures using in-situ
               characterization techniques. Additionally, machine learning algorithms should be integrated to predict
               multi-scale dielectric responses validated by electromagnetic simulations.

               DECLARATIONS
               Authors’ contributions
               Writing - original draft preparation: Hao, B.
               Writing - review & editing: Hao, B.; Zhang, Y. B.
               Investigation: Chai, Z. H.; Li, M.; Duan, J. J.; Zhang, Y.
               Supervision: Zhang, Y. B.; Gong, C. H.
               Resources: Li, C. P.
               Conceptualization: Gong, C. H.
               Project administration: Gong, C. H.

               Availability of data and materials
               The data that support the findings of this study are available from the corresponding author upon
               reasonable request.


               Financial support and sponsorship
               This work was financially supported by the National Natural Science Foundation of China (Nos. 22475065
               and 22305066).

               Conflict of Interest
               The authors declare no conflict of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Li, C.; Liang, L.; Zhang, B.; Yang, Y.; Ji, G. Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible
                    multipurpose microwave absorption and infrared stealth compatibility. Nanomicro. Lett. 2024, 17, 40.  DOI  PubMed  PMC
               2.       Cao, X.; Lan, D.; Zhang, Y.; Jia, Z.; Wu, G.; Yin, P. Construction of three-dimensional conductive network and heterogeneous
                    interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid. Mater. 2023, 6, 763.  DOI
               3.       Sharma, S.; Parne, S. R.; Panda, S. S. S.; Gandi, S. Progress in microwave absorbing materials: a critical review. Adv. Colloid.
                    Interface. Sci. 2024, 327, 103143.  DOI  PubMed
               4.       Zhao, Z.; Qing, Y.; Kong, L.; et al. Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater.
                    2024, 36, e2304182.  DOI
               5.       Zhang, Z.; Cai, Z.; Wang, Z.; et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption
                    materials. Nanomicro. Lett. 2021, 13, 56.  DOI  PubMed  PMC
               6.       Wang, M.; Cao, M. Perspectives on metal-organic framework-derived microwave absorption materials. J. Mater. Sci. Technol. 2025,
                    214, 37-52.  DOI
   116   117   118   119   120   121   122   123   124   125   126