Page 124 - Read Online
P. 124

Hao et al. Soft Sci. 2025, 5, 39  https://dx.doi.org/10.20517/ss.2025.48        Page 23 of 25

                    technology based on multi-scale collaborative design. J. Mater. Res. Technol. 2022, 18, 2770-83.  DOI
               67.       Yang, Z.; Luo, F.; Hu, Y.; Zhu, D.; Zhou, W. Dielectric and microwave absorption properties of TiAlCo ceramic fabricated by
                    atmospheric plasma spraying. Ceram. Int. 2016, 42, 8525-30.  DOI
               68.       Yu, Y.; Li, Z.; Wei, Z.; et al. Enhancing battery module safety with insulation material: Hollow glass microspheres incorporating
                    aerogel of varying particle sizes. Chem. Eng. J. 2023, 478, 147400.  DOI
               69.       Shen, G.; Wei, H.; Cai, X.; Xu, Y. Dielectric and microwave absorption performances of hollow C/TiO  composite microspheres.
                                                                                         2
                    MRS. Commun. 2021, 11, 890-5.  DOI
               70.       Wang, N.; Samani, M. K.; Li, H.; et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering.
                    Small 2018, e1801346.  DOI
               71.       Li, C.; Zhang, L.; Zhang, S.; et al. Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient
                    electromagnetic microwave absorption in wide temperature spectrum. Nano. Res. 2024, 17, 1666-75.  DOI
               72.       Zhao, B.; Du, Y.; Yan, Z.; et al. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption
                    properties. Adv. Funct. Mater. 2023, 33, 2209924.  DOI
               73.       Kumar, R.; Sahoo, S.; Joanni, E. Composites based on layered materials for absorption of microwaves and electromagnetic shielding.
                    Carbon 2023, 211, 118072.  DOI
               74.       Yin, P.; Lan, D.; Lu, C.; et al. Research progress of structural regulation and composition optimization to strengthen absorbing
                    mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 2025, 204, 204-23.  DOI
               75.       Jian, S.; Wu, X.; Yu, H.; Wang, L. Enhancing strategies of MOFs-derived materials for microwave absorption: review and
                    perspective. Adv. Colloid. Interface. Sci. 2025, 338, 103412.  DOI
               76.       Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh). 2022, 9,
                    e2105553.  DOI  PubMed  PMC
               77.       Shi, M.; Jia, Z.; Lan, D.; Gao, Z.; Zhang, S.; Wu, G. Enhanced polarization relaxation of multidimensional bimetallic selenide
                    nanocomposites for electromagnetic wave absorption. Adv. Funct. Mater. 2025, e02261.  DOI
               78.       Luo, N.; Ma, Y.; Ni, Z.; Chen, F.; Fu, Q. Preparation of reduced graphene oxide aerogel microspheres with excellent electromagnetic
                    microwave absorption performance. Carbon 2025, 243, 120466.  DOI
               79.       Jiang, Z.; Si, H.; Li, Y.; et al. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and
                    efficient microwave absorption. Nano. Res. 2022, 15, 8546-54.  DOI
               80.       Pan, Y.; Cheng, L.; Lan, D.; et al. Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic
                    wave absorption. J. Mater. Sci. Technol. 2026, 244, 129-41.  DOI
               81.       Liu, T.; Wang, C.; Zhang, X.; et al. Phase engineering in a twin-phase β/γ-MoC  lightweight nanoflower with matched fermi level for
                                                                       x
                    enhancing electron transport across the polarized interfaces in electromagnetic wave attenuation. Adv. Funct. Mater. 2024, 34,
                    2410194.  DOI
               82.       Zeng, X.; Nie, T.; Zhao, C.; Gao, Y.; Liu, X. In situ exsolution-prepared solid-solution-type sulfides with intracrystal polarization for
                    efficient and selective absorption of low-frequency electromagnetic wave. Adv. Sci. (Weinh). 2024, 11, e2403723.  DOI  PubMed
                    PMC
               83.       Sun, R.; Lv, H.; Lian, G.; et al. Dielectric shell regulation in synergy FeCoNi@ZnIn S  microspheres with broadband electromagnetic
                                                                          2 4
                    wave absorption. Soft. Sci. 2025, 5, 35.  DOI
               84.       Quan, B.; Liang, X.; Ji, G.; et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys.
                    Compd. 2017, 728, 1065-75.  DOI
               85.       Kuriakose, M.; Longuemart, S.; Depriester, M.; Delenclos, S.; Sahraoui, A. H. Maxwell-Wagner-Sillars effects on the thermal-
                    transport properties of polymer-dispersed liquid crystals. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 2014, 89, 022511.  DOI
                    PubMed
               86.       He,  M.;  Zhong,  X.;  Lu,  X.;  et  al.  Excellent  low-frequency  microwave  absorption  and  high  thermal  conductivity  in
                    polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 2024, 36, e2410186.
                    DOI
               87.       Li, N.; Wen, B.; Li, X.; Yang, S.; Yang, G.; Ding, S. Phase structure-induced amplification of interfacial polarization loss for
                    excellent electromagnetic wave absorption. Chem. Eng. J. 2024, 488, 150420.  DOI
               88.       Zhao, Y.; Wang, L.; Liu, Z.; et al. Simple synthesis of hollow CoFe carbon fiber composites with enhanced heterogeneous interfaces
                    and impedance matching for broadband microwave absorption. J. Mater. Sci. Technol. 2025, 238, 178-90.  DOI
               89.       Su, X.; Wang, J.; Liu, T.; et al. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption
                    enhancement. Adv. Funct. Mater. 2024, 34, 2403397.  DOI
               90.       Fang, X.; Li, W.; Chen, X.; Wu, Z.; Zhang, Z.; Zou, Y. Controlling the microstructure of biomass-derived porous carbon to assemble
                    structural absorber for broadening bandwidth. Carbon 2022, 198, 70-9.  DOI
               91.       Cao, W.; Wang, X.; Yuan, J.; Wang, W.; Cao, M. Temperature dependent microwave absorption of ultrathin graphene composites. J.
                    Mater. Chem. C. 2015, 3, 10017-22.  DOI
               92.       Li, C.; Zeng, X.; Tan, L.; et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity
                    of polymer. Chem. Eng. J. 2019, 368, 79-87.  DOI
               93.       Guo, Q.; Amendola, E.; Lavorgna, M.; et al. Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption
                    of oil pollutants from water. Carbohydr. Polym. 2022, 290, 119416.  DOI
   119   120   121   122   123   124   125   126   127   128   129