Page 125 - Read Online
P. 125
Page 24 of 25 Hao et al. Soft Sci. 2025, 5, 39 https://dx.doi.org/10.20517/ss.2025.48
94. Lefrançois, P. L.; Colò, F.; Meligrana, G.; et al. Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres
for high power and durable Li-ion battery anodes. Adv. Energy. Mater. 2018, 8, 1802438. DOI
95. Meng, F.; Wang, H.; Wei; et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance
microwave absorption by electrospinning-freeze drying process. Nano. Res. 2018, 11, 2847-61. DOI
96. Zhang, Y.; Si, H.; Dai, Z.; et al. Subwavelength-scale graphene aerogel powders for efficient microwave absorption composites with
improved mechanical strength. Chem. Eng. J. 2025, 505, 159118. DOI
97. Wang, Z.; Yang, T.; Zhou, L.; Hou, X.; Fang, Z.; Hou, Y. Current progress and challenges of electromagnetic wave absorbing
materials at high temperature. Adv. Sci. (Weinh). 2025, e04286. DOI
98. Wang, C.; Ding, Y.; Yuan, Y.; et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave
absorption. J. Mater. Chem. C. 2015, 3, 11893-901. DOI
99. Shao, G.; Guo, L.; Xu, R.; Wu, Y.; Huang, X. Carbon nanofiber aerogel microspheres with heterogeneous skin-core structure for
broadband electromagnetic wave absorption. Carbon 2024, 228, 119416. DOI
100. Fang, X.; Zhang, Y.; Pang, K.; et al. In situ construction of efficient electromagnetic function Graphene/PES composites based on
liquid phase exfoliation strategy. Mater. Today. Phys. 2024, 43, 101408. DOI
101. Li, Y.; Meng, F.; Mei, Y.; et al. Electrospun generation of Ti C T MXene@graphene oxide hybrid aerogel microspheres for tunable
3 2 x
high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512. DOI
102. Zhi, D.; Li, T.; Qi, Z.; et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband
microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496. DOI
103. Jing, W.; Hui, Z. Cost-effective preparation and high performance of high-temperature electromagnetic wave absorbing materials
based on graphene nanosheets. Ceram. Int. 2024, 50, 31080-7. DOI
104. Wang, W.; Li, Z.; Gao, X.; Huang, Y.; He, R. Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-
broadband and high temperature electromagnetic wave absorption. Additive. Manufacturing. 2024, 85, 104158. DOI
105. Jiang, Z.; Gao, Y.; Pan, Z.; et al. Pomegranate-like ATO/SiO microspheres for efficient microwave absorption in wide temperature
2
spectrum. J. Mater. Sci. Technol. 2024, 174, 195-203. DOI
106. Wang, W.; Wang, L.; Liu, G.; et al. Temperature-dependent dielectric properties and high-temperature microwave absorption
performance of Ti SiC /Al O -13%TiO coatings. J. Eur. Ceram. Soc. 2024, 44, 254-60. DOI
3 2 2 3 2
107. Li, T.; Zhi, D.; Chen, Y.; Li, B.; Zhou, Z.; Meng, F. Multiaxial electrospun generation of hollow graphene aerogel spheres for
broadband high-performance microwave absorption. Nano. Res. 2020, 13, 477-84. DOI
108. Zhang, Y.; Zhang, L.; Si, H.; et al. TiN nanofiber metacomposites for efficient electromagnetic wave absorption: Insights on multiple
reflections and scattering effects. J. Mater. Sci. Technol. 2025, 233, 69-79. DOI
109. Chen, D.; Li, T.; Deng, W.; et al. Dual-resonant cavities-induced hierarchical heterogeneous enhancement effect of multi-interfacial
microspheres for broadband microwave absorption. Carbon 2025, 238, 120316. DOI
110. Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. Porous graphene microflowers for high-performance microwave absorption.
Nanomicro. Lett. 2018, 10, 26. DOI PubMed PMC
111. Tian, Y.; Estevez, D.; Wang, G.; Peng, M.; Qin, F. Macro-ordered porous carbon nanocomposites for efficient microwave absorption.
Carbon 2024, 218, 118614. DOI
112. Duan, S.; Liu, C.; Peng, K.; Xu, G.; Xu, C. A simple and reliable route to prepare high-temperature microwave high-performing
absorbers. J. Mater. Sci:. Mater. Electron. 2021, 32, 25996-6006. DOI
113. Hang, T.; Zhou, L.; Li, Z.; et al. Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced
microwave absorption. Carbohydr. Polym. 2024, 329, 121777. DOI
114. Li, T.; Li, J.; Zhi, D.; et al. Top-level electromagnetic design of multishell resonant cavity for microspherical microwave structural
absorbers. Small. Structures. 2025, 6, 2400666. DOI
115. Gao, J.; Li, Z.; Jin, Z.; Che, X. Ultra-broadband microwave absorber based on disordered metamaterials. Opt. Express. 2024, 32,
25740-54. DOI
116. Sheinfux H, Kaminer I, Genack AZ, Segev M. Interplay between evanescence and disorder in deep subwavelength photonic
structures. Nat. Commun. 2016, 7, 12927. DOI PubMed PMC
117. Pichler, K.; Kühmayer, M.; Böhm, J.; et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature
2019, 567, 351-5. DOI
118. Zhang, H.; Cheng, Q.; Chu, H.; Christogeorgos, O.; Wu, W.; Hao, Y. Hyperuniform disordered distribution metasurface for scattering
reduction. Appl. Phys. Lett. 2021, 118, 101601. DOI
119. Qin, Y.; Ni, C.; Xie, X.; et al. Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with
Co O microwave absorbent. J. Colloid. Interface. Sci. 2021, 602, 344-54. DOI
3 4
120. Zhang, Y.; Han, M.; Hu, R.; Zhang, P.; Pan, L.; Sun, Z. Sandwiched MXene/polyimide composite foams for multiscale microwave
absorption. Sci. China. Mater. 2024, 67, 272-8. DOI
121. Li, S.; Mo, W.; Sun, H.; Liu, Y.; Wang, Q. Constructing honeycomb-like hierarchical foam via electromagnetic cooperation strategy
for broadband microwave absorption. Carbon 2023, 215, 118425. DOI
122. Benhamou, S. M.; Houbad, M. Optimizing the management, control, and computation of skin depth in laminated structures
considering reflection effects. Wave. Motion. 2024, 127, 103292. DOI
123. Shao, G.; Xu, R.; Chen, Y.; et al. Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response

