Page 125 - Read Online
P. 125

Page 24 of 25                           Hao et al. Soft Sci. 2025, 5, 39  https://dx.doi.org/10.20517/ss.2025.48

               94.       Lefrançois, P. L.; Colò, F.; Meligrana, G.; et al. Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres
                    for high power and durable Li-ion battery anodes. Adv. Energy. Mater. 2018, 8, 1802438.  DOI
               95.       Meng, F.; Wang, H.; Wei; et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance
                    microwave absorption by electrospinning-freeze drying process. Nano. Res. 2018, 11, 2847-61.  DOI
               96.       Zhang, Y.; Si, H.; Dai, Z.; et al. Subwavelength-scale graphene aerogel powders for efficient microwave absorption composites with
                    improved mechanical strength. Chem. Eng. J. 2025, 505, 159118.  DOI
               97.       Wang, Z.; Yang, T.; Zhou, L.; Hou, X.; Fang, Z.; Hou, Y. Current progress and challenges of electromagnetic wave absorbing
                    materials at high temperature. Adv. Sci. (Weinh). 2025, e04286.  DOI
               98.       Wang, C.; Ding, Y.; Yuan, Y.; et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave
                    absorption. J. Mater. Chem. C. 2015, 3, 11893-901.  DOI
               99.       Shao, G.; Guo, L.; Xu, R.; Wu, Y.; Huang, X. Carbon nanofiber aerogel microspheres with heterogeneous skin-core structure for
                    broadband electromagnetic wave absorption. Carbon 2024, 228, 119416.  DOI
               100.      Fang, X.; Zhang, Y.; Pang, K.; et al. In situ construction of efficient electromagnetic function Graphene/PES composites based on
                    liquid phase exfoliation strategy. Mater. Today. Phys. 2024, 43, 101408.  DOI
               101.      Li, Y.; Meng, F.; Mei, Y.; et al. Electrospun generation of Ti C T MXene@graphene oxide hybrid aerogel microspheres for tunable
                                                           3  2 x
                    high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.  DOI
               102.      Zhi, D.; Li, T.; Qi, Z.; et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband
                    microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.  DOI
               103.      Jing, W.; Hui, Z. Cost-effective preparation and high performance of high-temperature electromagnetic wave absorbing materials
                    based on graphene nanosheets. Ceram. Int. 2024, 50, 31080-7.  DOI
               104.      Wang, W.; Li, Z.; Gao, X.; Huang, Y.; He, R. Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-
                    broadband and high temperature electromagnetic wave absorption. Additive. Manufacturing. 2024, 85, 104158.  DOI
               105.      Jiang, Z.; Gao, Y.; Pan, Z.; et al. Pomegranate-like ATO/SiO  microspheres for efficient microwave absorption in wide temperature
                                                            2
                    spectrum. J. Mater. Sci. Technol. 2024, 174, 195-203.  DOI
               106.      Wang, W.; Wang, L.; Liu, G.; et al. Temperature-dependent dielectric properties and high-temperature microwave absorption
                    performance of Ti SiC /Al O -13%TiO  coatings. J. Eur. Ceram. Soc. 2024, 44, 254-60.  DOI
                                3  2  2  3   2
               107.      Li, T.; Zhi, D.; Chen, Y.; Li, B.; Zhou, Z.; Meng, F. Multiaxial electrospun generation of hollow graphene aerogel spheres for
                    broadband high-performance microwave absorption. Nano. Res. 2020, 13, 477-84.  DOI
               108.      Zhang, Y.; Zhang, L.; Si, H.; et al. TiN nanofiber metacomposites for efficient electromagnetic wave absorption: Insights on multiple
                    reflections and scattering effects. J. Mater. Sci. Technol. 2025, 233, 69-79.  DOI
               109.      Chen, D.; Li, T.; Deng, W.; et al. Dual-resonant cavities-induced hierarchical heterogeneous enhancement effect of multi-interfacial
                    microspheres for broadband microwave absorption. Carbon 2025, 238, 120316.  DOI
               110.      Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. Porous graphene microflowers for high-performance microwave absorption.
                    Nanomicro. Lett. 2018, 10, 26.  DOI  PubMed  PMC
               111.      Tian, Y.; Estevez, D.; Wang, G.; Peng, M.; Qin, F. Macro-ordered porous carbon nanocomposites for efficient microwave absorption.
                    Carbon 2024, 218, 118614.  DOI
               112.      Duan, S.; Liu, C.; Peng, K.; Xu, G.; Xu, C. A simple and reliable route to prepare high-temperature microwave high-performing
                    absorbers. J. Mater. Sci:. Mater. Electron. 2021, 32, 25996-6006.  DOI
               113.      Hang, T.; Zhou, L.; Li, Z.; et al. Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced
                    microwave absorption. Carbohydr. Polym. 2024, 329, 121777.  DOI
               114.      Li, T.; Li, J.; Zhi, D.; et al. Top-level electromagnetic design of multishell resonant cavity for microspherical microwave structural
                    absorbers. Small. Structures. 2025, 6, 2400666.  DOI
               115.      Gao, J.; Li, Z.; Jin, Z.; Che, X. Ultra-broadband microwave absorber based on disordered metamaterials. Opt. Express. 2024, 32,
                    25740-54.  DOI
               116.      Sheinfux H, Kaminer I, Genack AZ, Segev M. Interplay between evanescence and disorder in deep subwavelength photonic
                    structures. Nat. Commun. 2016, 7, 12927.  DOI  PubMed  PMC
               117.      Pichler, K.; Kühmayer, M.; Böhm, J.; et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature
                    2019, 567, 351-5.  DOI
               118.      Zhang, H.; Cheng, Q.; Chu, H.; Christogeorgos, O.; Wu, W.; Hao, Y. Hyperuniform disordered distribution metasurface for scattering
                    reduction. Appl. Phys. Lett. 2021, 118, 101601.  DOI
               119.      Qin, Y.; Ni, C.; Xie, X.; et al. Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with
                    Co O  microwave absorbent. J. Colloid. Interface. Sci. 2021, 602, 344-54.  DOI
                      3  4
               120.      Zhang, Y.; Han, M.; Hu, R.; Zhang, P.; Pan, L.; Sun, Z. Sandwiched MXene/polyimide composite foams for multiscale microwave
                    absorption. Sci. China. Mater. 2024, 67, 272-8.  DOI
               121.      Li, S.; Mo, W.; Sun, H.; Liu, Y.; Wang, Q. Constructing honeycomb-like hierarchical foam via electromagnetic cooperation strategy
                    for broadband microwave absorption. Carbon 2023, 215, 118425.  DOI
               122.      Benhamou, S. M.; Houbad, M. Optimizing the management, control, and computation of skin depth in laminated structures
                    considering reflection effects. Wave. Motion. 2024, 127, 103292.  DOI
               123.      Shao, G.; Xu, R.; Chen, Y.; et al. Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response
   120   121   122   123   124   125   126   127   128   129   130