Page 123 - Read Online
P. 123

Page 22 of 25                           Hao et al. Soft Sci. 2025, 5, 39  https://dx.doi.org/10.20517/ss.2025.48

               36.       Lan, D.; Gao, Z.; Zhao, Z.; Wu, G.; Kou, K.; Wu, H. Double-shell hollow glass microspheres@Co SiO  for lightweight and efficient
                                                                                       4
                                                                                    2
                    electromagnetic wave absorption. Chem. Eng. J. 2021, 408, 127313.  DOI
               37.       Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and
                    tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818.  DOI
               38.       Wang, J.; Wu, Z.; Xing, Y.; Li, B.; Huang, P.; Liu, L. Multi-scale design of ultra-broadband microwave metamaterial absorber based
                    on hollow carbon/MXene/Mo C microtube. Small 2023, 19, e2207051.  DOI
                                       2
               39.       Hao, B.; Zhang, Y.; Si, H.; et al. Multiscale design of dielectric composites for enhanced microwave absorption performance at
                    elevated temperatures. Adv. Funct. Mater. 2025, 35, 2423897.  DOI
               40.       Lv, H.; Yao, Y.; Yuan, M.; et al. Functional nanoporous graphene superlattice. Nat. Commun. 2024, 15, 1295.  DOI  PubMed  PMC
               41.       Xiong, X.; Zhang, H.; Lv, H.; et al. Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave
                    absorption. Carbon 2024, 219, 118834.  DOI
               42.       Zhang, F.; Li, N.; Shi, J.; et al. Recent progress on carbon-based microwave absorption materials for multifunctional applications: a
                    review. Composites. Part. B:. Engineering. 2024, 283, 111646.  DOI
               43.       Liao, S. Y.; Wang, X. Y.; Shi, Y. Y.; et al. Reversible switching between microwave absorption and emi shielding of VO  composite
                                                                                                  2
                    foam. Small 2024, 20, e2402841.  DOI
               44.       Wang, Y.; Wang, Y.; Han, H.; et al. Multi-level structural design guided by the innovative cup filled theory for enhanced
                    electromagnetic wave absorption. Carbon 2025, 243, 120452.  DOI
               45.       Lv, H.; Zhou, X.; Wu, G.; Kara, U. I.; Wang, X. Engineering defects in 2D g-C N  for wideband, efficient electromagnetic absorption
                                                                       3  4
                    at elevated temperature. J. Mater. Chem. A. 2021, 9, 19710-8.  DOI
               46.       Cao, S.; Yu, J. g-C N -based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101-7.  DOI  PubMed
                                  4
                                3
               47.       He, Y.; Su, Q.; Liu, D.; et al. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem.
                    Eng. J. 2024, 491, 152041.  DOI
               48.       Wang, X.; Zhao, C.; Li, C.; et al. Progress in MXene-based materials for microwave absorption. J. Mater. Sci. Technol. 2024, 180,
                    207-25.  DOI
               49.       Cui, C.; Guo, R.; Ren, E.; et al. MXene-based rGO/Nb CT /Fe O  composite for high absorption of electromagnetic wave. Chem.
                                                        2  x  3  4
                    Eng. J. 2021, 405, 126626.  DOI
               50.       Lin, Y.; Zhou, X.; Wang, Y.; et al. Progress of MOFs composites in the field of microwave absorption. Carbon 2025, 238, 120241.
                    DOI
               51.       Zhang, X.; Tian, X. L.; Qin, Y.; et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting
                    electromagnetic wave absorption. ACS. Nano. 2023, 17, 12510-8.  DOI
               52.       Long, L.; Cai, S.; Deng, M. MoS -based nanocomposites toward electromagnetic wave absorption. Mater. Res. Bull. 2024, 174,
                                          2
                    112732.  DOI
               53.       Miao, B.; Cao, Y.; Zhu, Q.; et al. Scalable synthesis of 2D Ti CT MXene and molybdenum disulfide composites with excellent
                                                             2  x
                    microwave absorbing performance. Adv. Compos. Hybrid. Mater. 2023, 6, 643.  DOI
               54.       Dai, J.; Yang, H.; Wen, B.; Zhou, H.; Wang, L.; Lin, Y. Flower-like MoS @Bi Fe O  microspheres with hierarchical structure as
                                                                     2   2  4  9
                    electromagnetic wave absorber. Appl. Surf. Sci. 2019, 479, 1226-35.  DOI
               55.       Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295-309.  DOI
               56.       Ma, J.; Duan, Y.; Zhu, N.; Jia, H.; Wu, N.; Pang, H. High-entropy perovskite (Y La Sm Nd Gd )CoO  with dielectric-
                                                                            0.2  0.2  0.2  0.2  0.2  3
                    conductive synergy achieving wide-temperature-range EMI shielding and electromagnetic wave absorption compatibility. Chem.
                    Eng. J. 2025, 520, 165716.  DOI
               57.       Wu, H.; Lu, Q.; Li, Y.; et al. Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano.
                    Lett. 2022, 22, 6492-500.  DOI
               58.       Chen, X.; Wu, Y.; Gu, W.; et al. Research progress on nanostructure design and composition regulation of carbon spheres for the
                    microwave absorption. Carbon 2022, 189, 617-33.  DOI
               59.       Wang, L.; Li, X.; Shi, X.; et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale
                    2021, 13, 2136-56.  DOI
               60.       Zhao, X.; Yao, W.; Gao, W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater.
                    2017, 29, 1701482.  DOI
               61.       Zhang, Y.; Liu, X.; Guo, Z.; et al. MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic
                    wave absorption. J. Mater. Sci. Technol. 2024, 176, 167-75.  DOI
               62.       Xu, Z.; Du, J.; Wang, J.; et al. A comparative study on the microwave absorption properties of core-single-shell, core-double-shell
                    and yolk-shell CIP/ceramic composite microparticles. J. Magn. Magn. Mater. 2022, 547, 168959.  DOI
               63.       Tian, Y.; Zhi, D.; Li, T.; et al. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic
                    attenuation. Chem. Eng. J. 2023, 464, 142644.  DOI
               64.       Wang, G.; Li, C.; Estevez, D.; et al. Boosting interfacial polarization through heterointerface engineering in MXene/graphene
                    intercalated-based microspheres for electromagnetic wave absorption. Nanomicro. Lett. 2023, 15, 152.  DOI  PubMed  PMC
               65.       Cai, Y.; Wang, Z.; Fei, G.; Lavorgna, M.; Xia, H. Polyimide derived carbon/graphene hybrid aerogel microspheres for strong and
                    wide bandwidth microwave absorption. Adv. Funct. Mater. 2025, 35, 2419252.  DOI
               66.       Fu, Z.; Pang, A.; Luo, H.; Zhou, K.; Yang, H. Research progress of ceramic matrix composites for high temperature stealth
   118   119   120   121   122   123   124   125   126   127   128