Page 122 - Read Online
P. 122

Hao et al. Soft Sci. 2025, 5, 39  https://dx.doi.org/10.20517/ss.2025.48        Page 21 of 25

               7.       Li, N.; Zong, Z.; Zhang, F.; et al. Barium ferrite with high anisotropy for ultra-broadband microwave absorption. Adv. Funct. Mater.
                    2025, 35, 2414694.  DOI
               8.       Li, Z.; Duan, Y.; Liu, X.; et al. Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-
                    entropy alloy powders. Adv. Funct. Mater. 2025, 2507152.  DOI
               9.       Xiang, X.; Yang, Z.; Fang, G.; et al. Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials. Mater.
                    Today. Phys. 2023, 36, 101184.  DOI
               10.       Li, W.; Xu, X.; Fan, L.; et al. Porous pure magnetic foam with engineered heterointerfaces for enhanced microwave absorption. J.
                    Mater. Sci. Technol. 2025, 234, 113-21.  DOI
               11.       liu, Z.; Wang, L.; Zhao, Y.; et al. Environmental adaptability and efficient electromagnetic wave protection of C/Co aerogels by
                    anchoring Co to biomass carbon via the high-temperature induced morphological transformation of ZIF-67. Nano. Research. 2025,
                    18, 94907581.  DOI
               12.       Wu, Z.; Huang, J.; Zeng, X. Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient
                    electromagnetic synergy. Soft. Sci. 2024, 4, 42.  DOI
               13.       Zhou, L.; Hu, P.; Bai, M.; et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv.
                    Mater. 2025, 37, e2418321.  DOI
               14.       Song, X. J.; Zhang, T.; Gu, Z. X.; et al. Record enhancement of Curie temperature in host-guest inclusion ferroelectrics. J. Am. Chem.
                    Soc. 2021, 143, 5091-8.  DOI
               15.       Mishra, S.; Park, I. K.; Javaid, S.; Shin, S. H.; Lee, G. Enhancement of interlayer exchange coupling via intercalation in 2D magnetic
                    bilayers: towards high Curie temperature. Mater. Horiz. 2024, 11, 4482-92.  DOI  PubMed
               16.       Mohapatra, P. P.; Singh, H. K.; Dobbidi, P. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous
                    materials. Adv. Colloid. Interface. Sci. 2025, 337, 103381.  DOI  PubMed
               17.       Zhang, K.; Zhang, J.; Hou, Z.; Bi, S.; Zhao, Q. Multifunctional broadband microwave absorption of flexible graphene composites.
                    Carbon 2019, 141, 608-17.  DOI
               18.       An, Q.; Li, D.; Liao, W.; et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid
                    structures. Adv. Mater. 2023, 35, e2300659.  DOI
               19.       Li, J.; Chen, S.; Fan, R.; et al. Structural engineering on carbon materials for microwave absorption: From micro to macro to meta.
                    Carbon 2024, 224, 119058.  DOI
               20.       Liu, X.; Duan, Y.; Wu, N.; et al. Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-
                    stable ultra-broadband megahertz electromagnetic wave absorption. Nanomicro. Lett. 2025, 17, 164.  DOI  PubMed  PMC
               21.       Chen, H.; Cao, Y.; Wang, C.; et al. Superhydrophobic surfaces for the sustainable maintenance of building materials and stone-built
                    heritage: the challenges, opportunities and perspectives. Adv. Colloid. Interface. Sci. 2025, 335, 103343.  DOI
               22.       Zhai, M.; Zhao, S.; Guo, H.; et al. Bionic-structured electromagnetic interference shielding composites. Sci. Bull. (Beijing). 2025, 70,
                    2347-64.  DOI
               23.       Zhang, B.; Han, Q.; Zhang, J.; Han, Z.; Niu, S.; Ren, L. Advanced bio-inspired structural materials: Local properties determine
                    overall performance. Materials. Today. 2020, 41, 177-99.  DOI
               24.       Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23-36.  DOI
                    PubMed
               25.       Goodling, A. E.; Nagelberg, S.; Kaehr, B.; et al. Colouration by total internal reflection and interference at microscale concave
                    interfaces. Nature 2019, 566, 523-7.  DOI
               26.       Huang, L.; Duan, Y.; Dai, X.; et al. Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic
                    characteristics. Small 2019, 15, e1902730.  DOI
               27.       Kwon, Y. W.; Park, J.; Kim, T.; et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar
                    substrates for biomimetic hierarchical photonic structures. ACS. Nano. 2016, 10, 4609-17.  DOI
               28.       Duan, Y.; Xia, C.; Chen, W.; Jia, H.; Wang, M.; Shi, Y. A bio-inspired broadband absorption metamaterial: Driven by dual-structure
                    synergistically induced current vortices. J. Mater. Sci. Technol. 2025, 206, 193-201.  DOI
               29.       Anguita, J. V.; Ahmad, M.; Haq, S.; Allam, J.; Silva, S. R. P. Ultra-broadband light trapping using nanotextured decoupled graphene
                    multilayers. Sci. Adv. 2016, 2, e1501238.  DOI  PubMed  PMC
               30.       Lai, H.; Li, Q.; Wang, X.; Xu, S. A comprehensive morphology study on the carbon nanotube agglomerations in cementitious
                    composite. Carbon 2024, 223, 119014.  DOI
               31.       Zhang, W.; Ding, E.; Zhang, W.; Li, J.; Luo, C.; Zhang, L. Microstructure controllable polyimide/MXene composite aerogels for
                    high-temperature thermal insulation and microwave absorption. J. Mater. Chem. C. 2023, 11, 9438-48.  DOI
               32.       Hou, Z.; Xue, J.; Liu, Y.; et al. Bidirectional periodic pore structure Si-C-N multiphase ceramic with high thermostability and
                    excellent microwave absorption properties over a wide temperature range. J. Eur. Ceram. Soc. 2024, 44, 850-7.  DOI
               33.       Peng, Y.; Meng, X.; Wei, H.; et al. Controllable construction of hollow Ni/NiO@PPy particles for broadband and highly efficient
                    microwave absorption. Adv. Funct. Mater. 2025, 35, 2423405.  DOI
               34.       Liu, S.; Zhou, Y.; Zhang, F.; et al. A novel full-band microwave absorber based on scattering enhanced prism-honeycomb nested
                    structure. Adv. Funct. Mater. 2025, 35, 2422666.  DOI
               35.       Du, Y.; Yan, Z.; You, W.; et al. Balancing MXene surface termination and interlayer spacing enables superior microwave absorption.
                    Adv. Funct. Mater. 2023, 33, 2301449.  DOI
   117   118   119   120   121   122   123   124   125   126   127