Page 56 - Read Online
P. 56
Page 38 of 43 Wang et al. Soft Sci 2024;4:41 https://dx.doi.org/10.20517/ss.2024.53
cotton fibers. Nat Commun 2018;9:4479. DOI PubMed PMC
70. Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev 2023;123:613-62. DOI
71. Xiao R, Yu G, Xu BB, Wang N, Liu X. Fiber surface/interfacial engineering on wearable electronics. Small 2021;17:e2102903. DOI
PubMed
72. Li WJ, Mai JD, Ho C. Sensors and actuators on non-planar substrates. Sensor Actuat A Phys 1999;73:80-8. DOI
73. Goto S, Matsunaga T, Chen JJ, Makishi W, Esashi M, Haga Y. Fabrication techniques for multilayer metalization and patterning, and
surface mounting of components on cylindrical substrates for tube-shaped micro-tools. In: 2006 International Conference on
Microtechnologies in Medicine and Biology; 2006 May 09-12; Okinawa, Japan. IEEE; 2006. pp. 217-20. DOI
74. de Miranda R, Zamponi C, Quandt E. Rotational UV lithography device for cylindrical substrate exposure. Rev Sci Instrum
2009;80:015103. DOI PubMed
75. Joshima Y, Kokubo T, Horiuchi T. Application of laser scan lithography to fabrication of microcylindrical parts. Jpn J Appl Phys
2004;43:4031. DOI
76. Horiuchi T, Suzuki Y. Micro-fabrication of air-bearing grooves onto inner surfaces of fine copper pipes. Microelect Eng
2013;110:422-6. DOI
77. Horiuchi T, Sasaki R. New laser-scan exposure system for delineating precise helical patterns onto sub-50-µm wires. Jpn J Appl Phys
2012;51:06FL01. DOI
78. Horiuchi T, Fujii H, Yasunaga K. Lithography onto surfaces of fine-diameter pipes using rotary scan-projection exposure. J Photopol
Sci Technol 2015;28:273-8. DOI
79. Doll PW, Doll C, Käßer L, et al. Rotational UV-lithography using flexible chromium-coated polymer masks for the fabrication of
microstructured dental implant surfaces: a proof of concept. J Micromech Microeng 2020;30:045008. DOI
80. Park J, Fujita H, Kim B. Fabrication of metallic microstructure on curved substrate by optical soft lithography and copper
electroplating. Sensor Actuat A Phys 2011;168:105-11. DOI
81. Yang Z, Zhang Y, Itoh T, Maeda R. New fabrication method of three-electrode system on cylindrical capillary surface as a flexible
implantable microneedle. Surf Rev Lett 2013;20:1350027. DOI
82. Haga Y, Muyari Y, Goto S, Matsunaga T, Esashi M. Development of minimally invasive medical tools using laser processing on
cylindrical substrates. Electr Eng Jpn 2011;176:65-74. DOI
83. Liao M, Wang C, Hong Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat Nanotechnol
2022;17:372-7. DOI
84. Xie Y, Lu L, Tang Y, et al. Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor
electrodes. Mater Lett 2017;186:70-3. DOI
85. Yildirim DK, Bruce C, Uzun D, et al. A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.
55T. Magn Reson Med 2021;86:1786-801. DOI PubMed PMC
86. Zulkifli NA, Jeong W, Kim M, et al. 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and
breathing rehabilitation. Soft Sci 2024;4:20. DOI
87. Zeng Y, Chen G, Zhao F, et al. 3D printing of high-temperature thick film platinum resistance temperature detector array. Addit
Manuf 2023;73:103654. DOI
88. Chen G, Zeng Y, Zhao F, et al. Conformal fabrication of functional polymer-derived ceramics thin films. Surf Coat Technol
2023;464:129536. DOI
89. Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat
Commun 2022;13:2101. DOI PubMed PMC
90. Zhang G, Lan H, Qian L, Zhao J, Wang F. A microscale 3D printing based on the electric-field-driven jet. 3D Print Addit Manuf
2020;7:37-44. DOI PubMed PMC
91. Hobbie HA, Doherty JL, Smith BN, Maccarini P, Franklin AD. Conformal printed electronics on flexible substrates and inflatable
catheters using lathe-based aerosol jet printing. Npj Flex Electron 2024;8:54. DOI PubMed PMC
92. Wang K, Wang X, Wang C, et al. Customizable and scalable manufacture of aesthetic ionic conductive silk yarns for e-textile
devices. Chem Eng J 2024;487:150645. DOI
93. Fu L, Liu Y, Liu Z, et al. Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors. Adv Mater 2006;18:181-
5. DOI
94. Carey T, Maughan J, Doolan L, et al. Knot architecture for biocompatible and semiconducting 2D electronic fiber transistors. Small
Methods 2024;8:e2301654. DOI
95. Lee GH, Lee DH, Jeon W, et al. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for
1D bioelectronics. Nat Commun 2023;14:4173. DOI PubMed PMC
96. Woo S, Kim H, Kim J, Ryu H, Lee J. Fiber-based flexible ionic diode with high robustness and rectifying performance: toward
electronic textile circuits. Adv Elect Mater 2024;10:2300653. DOI
97. Liao M, Wang J, Ye L, et al. A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J Mater Chem A
2021;9:6811-8. DOI
98. Han J, Xu C, Zhang J, et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano
2021;15:1597-607. DOI
99. Cheung CL, Wu M, Fang G, et al. Omnidirectional monolithic marker for intra-operative MR-based positional sensing in closed

