Page 58 - Read Online
P. 58

Page 40 of 43                           Wang et al. Soft Sci 2024;4:41  https://dx.doi.org/10.20517/ss.2024.53

               131.      Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater
                    2014;26:2022-7.  DOI  PubMed
               132.      Geng W, Cuthbert TJ, Menon C. Conductive thermoplastic elastomer composite capacitive strain sensors and their application in a
                    wearable device for quantitative joint angle prediction. ACS Appl Polym Mater 2021;3:122-9.  DOI
               133.      Zhou J, Gu Y, Fei P, et al. Flexible piezotronic strain sensor. Nano Lett 2008;8:3035-40.  DOI
               134.      Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and
                    triboelectric energy-harvesting smart textiles. Nano Energy 2020;78:105389.  DOI
               135.      Dong L, Gang T, Bian C, Tong R, Wang J, Hu M. A high sensitivity optical fiber strain sensor based on hollow core tapering. Opt
                    Fiber Technol 2020;56:102179.  DOI
               136.      Liu S, Zhang W, He J, Lu Y, Wu Q, Xing M. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from
                    spatial 1D and 2D perspectives. Adv Fiber Mater 2024;6:36-67.  DOI
               137.      Li L, Xiang H, Xiong Y, et al. Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics
                    and implantable medicine. Adv Sci 2018;5:1800558.  DOI  PubMed  PMC
               138.      Zhang J, Xu B, Chen K, Li Y, Li G, Liu Z. Revolutionizing digital healthcare networks with wearable strain sensors using sustainable
                    fibers. SusMat 2024;4:e207.  DOI
               139.      Wei X, Liang X, Meng C, Cao S, Shi Q, Wu J. Multimodal electronic textiles for intelligent human-machine interfaces. Soft Sci
                    2023;3:17.  DOI
               140.      Sheng F, Zhang B, Zhang Y, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament
                    strain monitoring. ACS Nano 2022;16:10958-67.  DOI
               141.      Ning C, Cheng R, Jiang Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory
                    monitoring. ACS Nano 2022;16:2811-21.  DOI
               142.      Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron
                    2020;3:571-8.  DOI
               143.      Frutiger A, Muth JT, Vogt DM, et al. Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 2015;27:2440-6.
                    DOI
               144.      Lee J, Ihle SJ, Pellegrino GS, et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat
                    Electron 2021;4:291-301.  DOI
               145.      Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:24.  DOI
               146.      Lan L, Zhao F, Yao Y, Ping J, Ying Y. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable
                    double-twisted fiber for ultrasensitive textile pressure sensor. ACS Appl Mater Interfaces 2020;12:10689-96.  DOI  PubMed
               147.      Jiang X, Ren Z, Fu Y, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced
                    graphene oxide fiber fabrics in wide compression strains. ACS Appl Mater Interfaces 2019;11:37051-9.  DOI
               148.      Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano
                    Energy 2021;84:105954.  DOI
               149.      Chhetry A, Yoon H, Park JY. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a
                    microporous dielectric for wearable electronics. J Mater Chem C 2017;5:10068-76.  DOI
               150.      Chen Y, Wang Z, Xu R, Wang W, Yu D. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile
                    nanofibrous membrane via electroless silver plating. Chem Eng J 2020;394:124960.  DOI
               151.      Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci
                    Adv 2020;6:eaay2840.  DOI  PubMed  PMC
               152.      Wang Y, Zhu M, Wei X, Yu J, Li Z, Ding B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem Eng J
                    2021;425:130599.  DOI
               153.      Fan  W,  Liu  T,  Wu  F,  et  al.  An  antisweat  interference  and  highly  sensitive  temperature  sensor  based on poly(3,4-
                    ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body
                    temperature. ACS Nano 2023;17:21073-82.  DOI  PubMed  PMC
               154.      Yun J. Recent progress in thermal management for flexible/wearable devices. Soft Sci 2023;3:12.  DOI
               155.      Wang W, Yao D, Wang H, et al. A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel
                    microstructures for wireless wearables. Adv Funct Mater 2024;34:2316339.  DOI
               156.      Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv
                    Healthc Mater 2017;6:1601371.  DOI  PubMed
               157.      Husain M, Kennon R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications.
                    Fibers 2013;1:2-10.  DOI
               158.      Kumar SRS, Kurra N, Alshareef HN. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting
                    polymer thin films. J Mater Chem C 2016;4:215-21.  DOI
               159.      Lee J, Kim DW, Chun S, et al. Intrinsically strain-insensitive, hyperelastic temperature-sensing fiber with compressed micro-wrinkles
                    for integrated textronics. Adv Mater Technol 2020;5:2000073.  DOI
               160.      Li F, Xue H, Lin X, Zhao H, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl
                    Mater Interfaces 2022;14:43844-52.  DOI
               161.      Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE. Freestanding, fiber-based, wearable temperature sensor with tunable thermal
   53   54   55   56   57   58   59   60   61   62   63