Page 61 - Read Online
P. 61
Wang et al. Soft Sci 2024;4:41 https://dx.doi.org/10.20517/ss.2024.53 Page 43 of 43
221. Pu Z, Zhang X, Wu H, Wu J, Yu H, Li D. Cylindrical electrochemical sensor fabricated by rotated inkjet printing on flexible substrate
for glucose monitoring. In: 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems
(TRANSDUCERS); 2017 Jun 18-22; Kaohsiung, Taiwan. IEEE; 2017. pp. 1241-4. DOI
222. Marvin JS, Shimoda Y, Magloire V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods
2019;16:763-70. DOI
223. Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular probes, chemosensors, and nanosensors for optical
detection of biorelevant molecules and ions in aqueous media and biofluids. Chem Rev 2022;122:3459-636. DOI PubMed PMC
224. Musolino S, Schartner EP, Tsiminis G, Salem A, Monro TM, Hutchinson MR. Portable optical fiber probe for in vivo brain
temperature measurements. Biomed Opt Express 2016;7:3069-77. DOI PubMed PMC
225. Shin J, Liu Z, Bai W, et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci Adv
2019;5:eaaw1899. DOI PubMed PMC
226. Crane BC, Barwell NP, Gopal P, et al. The development of a continuous intravascular glucose monitoring sensor. J Diabetes Sci
Technol 2015;9:751-61. DOI PubMed PMC
227. Forderhase AG, Ligons LA, Norwood E, McCarty GS, Sombers LA. Optimized fabrication of carbon-fiber microbiosensors for
codetection of glucose and dopamine in brain tissue. ACS Sens 2024;9:2662-72. DOI PubMed
228. Nan K, Babaee S, Chan WW, et al. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a
quipu. Nat Biomed Eng 2022;6:1092-104. DOI PubMed
229. Nam S, Cha GD, Sunwoo SH, et al. Needle-like multifunctional biphasic microfiber for minimally invasive implantable
bioelectronics. Adv Mater 2024;36:e2404101. DOI
230. Abdelaziz MEMK, Tian L, Hamady M, Yang G, Temelkuran B. X-ray to MR: the progress of flexible instruments for endovascular
navigation. Prog Biomed Eng 2021;3:032004. DOI
231. Settecase F, Martin AJ, Lillaney P, Losey A, Hetts SW. Magnetic resonance-guided passive catheter tracking for endovascular
therapy. Magn Reson Imaging Clin N Am 2015;23:591-605. DOI PubMed PMC
232. Ratnayaka K, Faranesh AZ, Hansen MS, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur
Heart J 2013;34:380-9. DOI PubMed PMC
233. Ratnayaka K, Rogers T, Schenke WH, et al. Magnetic resonance imaging-guided transcatheter cavopulmonary shunt. JACC
Cardiovasc Interv 2016;9:959-70. DOI PubMed PMC
234. Yildirim KD, Basar B, Campbell-Washburn AE, Herzka DA, Kocaturk O, Lederman RJ. A cardiovascular magnetic resonance
(CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and
preserved mechanical performance. J Cardiovasc Magn Reson 2019;21:16. DOI PubMed PMC
235. Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O’Neill M. Cardiac electrophysiology under MRI guidance: an emerging
technology. Arrhythm Electrophysiol Rev 2017;6:85-93. DOI PubMed PMC
236. Saikus CE, Ratnayaka K, Barbash IM, et al. MRI-guided vascular access with an active visualization needle. J Magn Reson Imaging
2011;34:1159-66. DOI PubMed PMC
237. Kaiser M, Detert M, Rube MA, et al. Resonant marker design and fabrication techniques for device visualization during
interventional magnetic resonance imaging. Biomed Tech 2015;60:89-103. DOI
238. Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions.
Proc IEEE Inst Electr Electron Eng 2022;110:968-92. DOI PubMed PMC
239. Ellersiek D, Fassbender H, Bruners P, et al. A monolithically fabricated flexible resonant circuit for catheter tracking in magnetic
resonance imaging. Sensor Actuat B Chem 2010;144:432-6. DOI

