Page 57 - Read Online
P. 57
Wang et al. Soft Sci 2024;4:41 https://dx.doi.org/10.20517/ss.2024.53 Page 39 of 43
MRI. IEEE Trans Med Imaging 2024;43:439-48. DOI
100. Wasylczyk P, Ozimek F, Tiwari MK, Cruz Ld, Bergeles C. Bio-compatible piezoresistive pressure sensing skin sleeve for millimetre-
scale flexible robots: design, manufacturing and pitfalls. In: 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC); 2019 Jul 23-27; Berlin, Germany. IEEE; 2019. pp. 1657-61. DOI
101. Yang Z, Zhang Y, Itoh T, Maeda R. A novel MEMS compatible lab-on-a-tube technology. Lab Chip 2014;14:4604-8. DOI
102. Detert M, Friesecke S, Deckert M, Rose G, Schmidt B, Kaiser M. Using the hot embossing technology for the realization of
microtechnical structures in medical imaging. Biomed Tech 2012;57:599-602. DOI
103. Pothof F, Galchev T, Patel M, Herbawi AS, Paul O, Ruther P. 128-Channel deep brain recording probe with heterogenously
integrated analog CMOS readout for focal epilepsy localization. In: 2015 Transducers - 2015 18th International Conference on Solid-
State Sensors, Actuators and Microsystems (TRANSDUCERS); 2015 Jun 21-25; Anchorage, USA. IEEE; 2015. pp. 1711-4. DOI
104. Pothof F, Anees S, Leupold J, et al. Fabrication and characterization of a high-resolution neural probe for
stereoelectroencephalography and single neuron recording. In: 2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society; 2014 Aug 26-30; Chicago, USA. IEEE; 2014. pp. 5244-7. DOI
105. Schwaerzle M, Pothof F, Paul O, Ruther P. High-resolution optrode with integrated light source for deeper brain regions. Procedia
Eng 2015;120:924-7. DOI
106. Mekaru H, Takagi H, Ohtomo A, Kokubo M, Goto H. Soft patterning on cylindrical surface of plastic optical fiber. J Vac Sci Technol
B 2011;29:06FC07. DOI
107. Mekaru H, Ohtomo A, Takagi H, Kokubo M, Goto H. High-speed imprinting on plastic optical fibers using cylindrical mold with
hybrid microstructures. Microelect Eng 2013;110:156-62. DOI
108. Ding Y, Jiang J, Wu Y, et al. Porous conductive textiles for wearable electronics. Chem Rev 2024;124:1535-648. DOI
109. Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. Appl Phys Rev 2023;10:031303. DOI PubMed PMC
110. Zhou S, Li J, Zhang Q, et al. Recent advance on fiber optic SPR/LSPR-based ultra-sensitive biosensors using novel structures and
emerging signal amplification strategies. Opt Laser Technol 2024;175:110783. DOI
111. Guo J, Zhou B, Yang C, Dai Q, Kong L. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring.
Adv Funct Mater 2019;29:1902898. DOI
112. Abdelaziz MEMK, Zhao J, Gil Rosa B, et al. Fiberbots: robotic fibers for high-precision minimally invasive surgery. Sci Adv
2024;10:eadj1984. DOI PubMed PMC
113. Park J, Sempionatto JR, Kim J, et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-
time multiparameter biomedical assays on curved needle surfaces. ACS Sens 2020;5:1363-73. DOI
114. Lin R, Jin Y, Li RR, et al. Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation. Biosens
Bioelectron 2022;216:114651. DOI
115. Liu Z, Yu X, Huang J, Wu X, Wang Z, Zhu B. A review: flexible devices for nerve stimulation. Soft Sci 2024;4:4. DOI
116. Vazquez R, Motovilova E, Winkler SA. Stretchable sensor materials applicable to radiofrequency coil design in magnetic resonance
imaging: a review. Sensors 2024;24:3390. DOI PubMed PMC
117. Yaras YS, Yildirim DK, Herzka DA, et al. Real-time device tracking under MRI using an acousto-optic active marker. Magn Reson
Med 2021;85:2904-14. DOI PubMed PMC
118. Jin J, Wang S, Zhang Z, Mei D, Wang Y. Progress on flexible tactile sensors in robotic applications on objects properties recognition,
manipulation and human-machine interactions. Soft Sci 2023;3:8. DOI
119. Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.
DOI
120. Kim J, Kim H, Lee M, et al. Progresses and perspectives of 1D soft sensing devices for healthcare applications. Adv Funct Mater
2024:34;2406651. DOI
121. Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable
wearables. ACS Nano ;2023:1355-71. DOI
122. Zhu P, Li Z, Pang J, He P, Zhang S. Latest developments and trends in electronic skin devices. Soft Sci 2024;4:17. DOI
123. Kim KH, Kim JH, Ko YJ, Lee HE. Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic
applications. Soft Sci 2024;4:24. DOI
124. Gao W, Huang J, He J, et al. Recent advances in ultrathin materials and their applications in e-skin. InfoMat 2023;5:e12426. DOI
125. Hao Y, Yan Q, Liu H, et al. A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for
human-centered healthcare. Adv Funct Mater 2023;33:2303881. DOI
126. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices
for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765. DOI PubMed
127. Mi Q, Dong Y, Ge D, et al. Scalable manufacture of efficient, highly stable, and compact 3D imitation skin-based elastic triboelectric
nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2024;131:110283. DOI
128. Ge D, Mi Q, Gong R, et al. Mass-producible 3D hair structure-editable silk-based electronic skin for multiscenario signal monitoring
and emergency alarming system. Adv Funct Mater 2023;33:2305328. DOI
129. Lai Y, Ye B, Lu C, et al. Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and
multifunctional integration uses: a tactile-induced insulating-to-conducting transition. Adv Funct Mater 2016;26:1286-95. DOI
130. Jiang L, Yuan L, Wang W, Zhang Q. Soft materials for wearable supercapacitors. Soft Sci 2021;1:5. DOI

