Page 54 - Read Online
P. 54
Page 36 of 43 Wang et al. Soft Sci 2024;4:41 https://dx.doi.org/10.20517/ss.2024.53
9. Zhong Y, Liang Q, Chen Z, et al. High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface
photolithography. Chem Mater 2023;35:9739-46. DOI
10. Wu F, Lan B, Cheng Y, et al. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano
Energy 2022;101:107588. DOI
11. Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in
vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159-71. DOI
12. Pu Z, Tu J, Han R, et al. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for
implantable continuous glucose monitoring. Lab Chip 2018;18:3570-7. DOI
13. Jordan CD, Thorne BRH, Wadhwa A, et al. Wireless resonant circuits printed using aerosol jet deposition for MRI catheter tracking.
IEEE Trans Biomed Eng 2020;67:876-82. DOI PubMed PMC
14. Peng Z, Wang M, Lv H, et al. Electric field-driven microscale 3D printing of flexible thin-walled tubular mesh structures of molten
polymers. Materi Design 2023;225:111433. DOI
15. Zhang C, Zhang L, Pu Z, Bao B, Ouyang W, Li D. Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing
technology for wearable applications. Nano Energy 2023;113:108574. DOI
16. Jose M, Bezerra Alexandre E, Neumaier L, et al. Future thread: printing electronics on fibers. ACS Appl Mater Interfaces
2024;16:7996-8005. DOI
17. Horiuchi T, Suzuki Y. Fabrication of fine and high-density multithread spirals on inner surfaces of small-diameter pipes using laser
scan lithography. Jpn J Appl Phys 2014;53:06JM10. DOI
18. Hwang S, Kang M, Lee A, et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile
platform. Nat Commun 2022;13:3173. DOI PubMed PMC
19. Tamaki S, Matsunaga T, Kuki T, Mushiake H, Furusawa Y, Haga Y. Neural probe with multiple optical stimulation in depth
direction. Electron Commun Jpn 2017;100:45-54. DOI
20. Ham S, Kang M, Jang S, et al. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for
wearable neuromorphic applications. Sci Adv 2020;6:eaba1178. DOI PubMed PMC
21. Fabiano S, Facchetti A. Stretchable helix-structured fibre electronics. Nat Electron 2021;4:864-5. DOI
22. Wang Q, Han W, Wang Y, Lu M, Dong L. Tape nanolithography: a rapid and simple method for fabricating flexible, wearable
nanophotonic devices. Microsyst Nanoeng 2018;4:31. DOI PubMed PMC
23. Ye C, Zhao L, Yang S, Li X. Recent research on preparation and application of smart joule heating fabrics. Small 2024;20:e2309027.
DOI
24. Park J, Seo B, Jeong Y, Park I. A review of recent advancements in sensor-integrated medical tools. Adv Sci 2024;11:e2307427. DOI
PubMed PMC
25. Paulk AC, Kfir Y, Khanna AR, et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human
cortex. Nat Neurosci 2022;25:252-63. DOI
26. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci
2022;2:22. DOI
27. Wang P, Li X, Sun G, et al. Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal
management functionality. Adv Fiber Mater 2024. DOI
28. Sun X, Zhang F, Zhang L, et al. Enhanced electromechanical conversion via in situ grown CsPbBr nanoparticles/poly(vinylidene
3
fluoride) fibers for physiological signal monitoring. Soft Sci 2022;2:1. DOI
29. Zhang C, Ouyang W, Zhang L, Li D. A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing
technology for wearable and implantable health monitoring applications. Microsyst Nanoeng 2023;9:158. DOI PubMed PMC
30. Zhang M, Su H, Zhang C, Sun Z, Jiang Z. Smart optical fiber fabric based on side-emitting and side-coupling for pulse and blood
oxygen measurement. Text Res J 2023;93:3382-92. DOI
31. Tian S, Wang Y, Deng H, Wang Y, Zhang X. Flexible pressure and temperature sensors towards e-skin: material, mechanism,
structure and fabrication. Soft Sci 2023;3:30. DOI
32. Liu Y, Jia H, Sun H, et al. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat Neurosci
2024;27:1620-31. DOI
33. Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol
2019;15:148-60. DOI PubMed PMC
34. Nazempour R, Zhang B, Ye Z, Yin L, Lv X, Sheng X. Emerging applications of optical fiber-based devices for brain research. Adv
Fiber Mater 2022;4:24-42. DOI
35. Sellers KK, Chung JE, Zhou J, et al. Thin-film microfabrication and intraoperative testing of µECoG and iEEG depth arrays for sense
and stimulation. J Neural Eng 2021;18:045014. DOI PubMed PMC
36. Huang S, He M, Yao C, et al. Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for
theranostic endoscopic surgery. Adv Funct Mater 2023;33:2214485. DOI
37. Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci 2019;20:330-45. DOI PubMed PMC
38. Wang Z, Wu T, Wang Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun
2020;11:3842. DOI PubMed PMC
39. Uzun D, Yildirim DK, Bruce CG, et al. Interventional device tracking under MRI via alternating current controlled inhomogeneities.

