Page 55 - Read Online
P. 55

Wang et al. Soft Sci 2024;4:41  https://dx.doi.org/10.20517/ss.2024.53          Page 37 of 43

                    Magn Reson Med 2024;92:346-60.  DOI  PubMed  PMC
               40.       Yang Z, Shi J, Sun B, Yao J, Ding G, Sawada R. Fabrication of electromagnetically-driven tilted microcoil on polyimide capillary
                    surface for potential single-fiber endoscope scanner application. Micromachines 2018;9:61.  DOI  PubMed  PMC
               41.       Huang F, Hu J, Yan X, Meng F. High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves. J Ind
                    Text 2022;51:4554S-70S.  DOI
               42.       Kara G, Bolat S, Sharma K, et al. Conformal integration of an inkjet-printed PbS QDs-graphene IR photodetector on a polymer
                    optical fiber. Adv Mater Technol 2023;8:2201922.  DOI
               43.       Kwon S, Hwang YH, Nam M, et al. Recent progress of fiber shaped lighting devices for smart display applications - a fibertronic
                    perspective. Adv Mater 2020;32:e1903488.  DOI  PubMed
               44.       Lee K, Paulk AC, Ro YG, et al. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat
                    Commun 2024;15:218.  DOI  PubMed  PMC
               45.       Bilgin MB, Tiryaki ME, Lazovic J, Sitti M. Radio frequency sensing-based in situ temperature measurements during magnetic
                    resonance imaging interventional procedures. Adv Mater Technol 2022;7:2101625.  DOI
               46.       Yun J, Kim HW, Kim H, Lee J. Electrical impedance spectroscopy on a needle for safer Veress needle insertion during laparoscopic
                    surgery. Sensor Actuat B Chem 2017;250:453-60.  DOI
               47.       Baysoy E, Yildirim DK, Ozsoy C, Mutlu S, Kocaturk O. Thin film based semi-active resonant marker design for low profile
                    interventional cardiovascular MRI devices. MAGMA 2017;30:93-101.  DOI  PubMed
               48.       Gerbella M, Borra E, Pothof F, et al. Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural
                    probe in the monkey. J Neural Eng 2021;18:024001.  DOI
               49.       Fiáth R, Hofer KT, Csikós V, et al. Long-term recording performance and biocompatibility of chronically implanted cylindrically-
                    shaped, polymer-based neural interfaces. Biomed Tech 2018;63:301-15.  DOI
               50.       Hayat S, Basir A, Yoo H. Modeling and in vitro measurement of a compact antenna for intravascular catheter tracking and imaging
                    system. IEEE Trans Instrum Meas 2023;72:1-14.  DOI
               51.       Yun J, Kim HW, Lee JH. Improvement of depth profiling into biotissues using micro electrical impedance spectroscopy on a needle
                    with selective passivation. Sensors 2016;16:2207.  DOI  PubMed  PMC
               52.       Ganesana M, Trikantzopoulos E, Maniar Y, Lee ST, Venton BJ. Development of a novel micro biosensor for in vivo monitoring of
                    glutamate release in the brain. Biosens Bioelectron 2019;130:103-9.  DOI  PubMed  PMC
               53.       Zhang  R,  Wang  X,  Cai  S,  Tao  K,  Xu  Y.  A  solid-state  wire-shaped  supercapacitor  based  on  nylon/Ag/polypyrrole  and
                    nylon/Ag/MnO  electrodes. Polymers 2023;15:1627.  DOI  PubMed  PMC
                              2
               54.       Zhao Y, Lin Z, Dong S, Chen M. Review of wearable optical fiber sensors: drawing a blueprint for human health monitoring. Opt
                    Laser Technol 2023;161:109227.  DOI
               55.       Dong Y, Tian Y, Yang Y, et al. Multiple covalent modification enables nylon fiber biosensor with robust scrub-resistant and signal-
                    capture ability for multiscenario health monitoring and security warning. Int J Biol Macromol 2024;281:136518.  DOI
               56.       Wang Z, Xing D, Yin R, et al. Breathable and waterproof conductive cotton fabric pressure sensor with distinguished electrothermal
                    and electromagnetic interference shielding performances. Appl Mater Today 2024;38:102256.  DOI
               57.       Wang S, Xu Q, Sun H. Functionalization of fiber devices: materials, preparations and applications. Adv Fiber Mater 2022;4:324-41.
                    DOI
               58.       Sheng F, Zhao C, Zhang B, Tan Y, Dong K. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare.
                    Soft Sci 2024;4:2.  DOI
               59.       Liu T, He Z, Liu H, et al. Heat-resistant and high-performance solid-state supercapacitors based on poly(para-phenylene
                    terephthalamide) fibers via polymer-assisted metal deposition. ACS Appl Mater Interfaces 2021;13:18100-9.  DOI  PubMed
               60.       Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive
                    properties. Adv Mater 2016;28:722-8.  DOI  PubMed
               61.       Yang Z, Deng J, Chen X, Ren J, Peng H. A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl 2013;52:13453-
                    7.  DOI  PubMed
               62.       Wang Y, Ding Y, Guo X, Yu G. Conductive polymers for stretchable supercapacitors. Nano Res 2019;12:1978-87.  DOI
               63.       Xu W, Luo J, Zhang W, et al. Flexible airflow-strain dual response sensor with high sensitivity based on polyurethane conductive
                    fiber flocked carbon fibers. J Mater Sci Mater Electron 2024;35:13443.  DOI
               64.       Li P, Liu J, Wang S, et al. Highly stretchable electromechanical sensors with ionotronic knots based on hydrogel fibers. Adv Mater
                    Technol 2024;9:2302202.  DOI
               65.       Ding H, Wu Z, Wang H, et al. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based
                    on ionic hydrogel fibers for human-machine interfaces. Mater Horiz 2022;9:1935-46.  DOI
               66.       Niu Q, Huang L, Fan S, Yao X, Zhang Y. 3D printing silk fibroin/polyacrylamide triple-network composite hydrogels with
                    stretchability, conductivity, and strain-sensing ability as bionic electronic skins. ACS Biomater Sci Eng 2024;10:3489-99.  DOI
               67.       Yin Z, Jian M, Wang C, et al. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett 2018;18:7085-
                    91.  DOI
               68.       Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater
                    2020;5:61-81.  DOI
               69.       Kwon CH, Ko Y, Shin D, et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic
   50   51   52   53   54   55   56   57   58   59   60