Page 204 - Read Online
P. 204

Page 34 of 39                           Jeon et al. Soft Sci. 2025, 5, 1  https://dx.doi.org/10.20517/ss.2024.35

               48.       Hua, Q.; Shen, G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev.
                    2024, 53, 1316-53.  DOI
               49.       Wang, X.; Qi, L.; Yang, H.; Rao, Y.; Chen, H. Stretchable synaptic transistors based on the field effect for flexible neuromorphic
                    electronics. Soft. Sci. 2023, 3, 15.  DOI
               50.       Na, B. S.; Jung, S.; Moon, Y. G.; et al. InGaZnO-based stretchable ferroelectric memory transistor using patterned polyimide/
                    polydimethylsiloxane hybrid substrate. J. Nanosci. Nanotechnol. 2016, 16, 10280-3.  DOI
               51.       Cantarella, G.; Costanza, V.; Ferrero, A.; et al. Design of engineered elastomeric substrate for stretchable active devices and sensors.
                    Adv. Funct. Mater. 2018, 28, 1705132.  DOI
               52.       Park, K.; Lee, D.; Kim, B.; et al. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 2010, 20, 3577-82.  DOI
               53.       Kim, Y. H.; Lee, E.; Um, J. G.; Mativenga, M.; Jang, J. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius
                    for stretchable electronics. Sci. Rep. 2016, 6, 25734.  DOI  PubMed  PMC
               54.       Kim, J. O.; Hur, J. S.; Kim, D.; et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the
                    stretchable transistor applications. Adv. Funct. Mater. 2020, 30, 1906647.  DOI
               55.       Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field
                    effect transistor. J. Mater. Res. 2014, 29, 1585-96.  DOI
               56.       Heo, J. S.; Jeon, S. P.; Kim, I.; Lee, W.; Kim, Y. H.; Park, S. K. Suppression of interfacial disorders in solution-processed metal
                    oxide thin-film transistors by Mg doping. ACS. Appl. Mater. Interfaces. 2019, 11, 48054-61.  DOI  PubMed
               57.       Jeon, S. P.; Heo, J. S.; Kim, I.; Kim, Y. H.; Park, S. K. Enhanced interfacial integrity of amorphous oxide thin-film transistors by
                    elemental diffusion of ternary oxide semiconductors. ACS. Appl. Mater. Interfaces. 2020, 12, 57996-8004.  DOI  PubMed
               58.       Li, H.; Qu, M.; Zhang, Q. Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors. IEEE.
                    Electron. Device. Lett. 2013, 34, 1268-70.  DOI
               59.       Lee, J.; Choi, C. H.; Kim, T.; et al. Hydrogen-doping-enabled boosting of the carrier mobility and stability in amorphous IGZTO
                    transistors. ACS. Appl. Mater. Interfaces. 2022, 14, 57016-27.  DOI
               60.       Banger, K. K.; Peterson, R. L.; Mori, K.; Yamashita, Y.; Leedham, T.; Sirringhaus, H. High performance, low temperature solution-
                    processed barium and strontium doped oxide thin film transistors. Chem. Mater. 2014, 26, 1195-203.  DOI  PubMed  PMC
               61.       Lee, S.; Jeong, D.; Mativenga, M.; Jang, J. Highly robust bendable oxide thin-film transistors on polyimide substrates via mesh and
                    strip patterning of device layers. Adv. Funct. Mater. 2017, 27, 1700437.  DOI
               62.       Lee, G. J.; Heo, S. J.; Lee, S.; et al. Stress release effect of micro-hole arrays for flexible electrodes and thin film transistors. ACS.
                    Appl. Mater. Interfaces. 2020, 12, 19226-34.  DOI  PubMed
               63.       Yuan, X.; Dou, W.; Gan, X.; et al. Junctionless electric-double-layer thin-film transistors with logic functions. Phys. Status. Solidi.
                    RRL. 2023, 17, 2200480.  DOI
               64.       Jiang, J.; Sun, J.; Dou, W.; Wan, Q. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE. Electron.
                    Device. Lett. 2012, 33, 65-7.  DOI
               65.       Zhou, J.; Wu, G.; Guo, L.; Zhu, L.; Wan, Q. Flexible transparent junctionless TFTs With oxygen-tuned indium-zinc-oxide channels.
                    IEEE. Electron. Device. Lett. 2013, 34, 888-90.  DOI
               66.       Yuan, X.; Tan, Y.; Lei, L.; et al. Junctionless electric-double-layer TFTs on paper substrate. ECS. J. Solid. State. Sci. Technol. 2021,
                    10, 045004.  DOI
               67.       Lee, S.; Shin, J.; Jang, J. Top interface engineering of flexible oxide thin-film transistors by splitting active layer. Adv. Funct. Mater.
                    2017, 27, 1604921.  DOI
               68.       Nakata, M.; Takechi, K.; Eguchi, T.; Tokumitsu, E.; Yamaguchi, H.; Kaneko, S. Effects of thermal annealing on ZnO thin-film
                    transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn. J. Appl. Phys.
                    2009, 48, 081608.  DOI
               69.       Zhang, J.; Liu, Y.; Guo, L.; et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J. Mater. Sci.
                    Technol. 2015, 31, 171-4.  DOI
               70.       Cantarella, G.; Ishida, K.; Petti, L.; et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and
                    fabrication study. IEEE. Electron. Device. Lett. 2016, 37, 1582-5.  DOI
               71.       Song, K.; Noh, J.; Jun, T.; Jung, Y.; Kang, H. Y.; Moon, J. Fully flexible solution-deposited zno thin-film transistors. Adv. Mater.
                    2010, 22, 4308-12.  DOI  PubMed
               72.       Rim, Y. S.; Chen, H.; Liu, Y.; Bae, S. H.; Kim, H. J.; Yang, Y. Direct light pattern integration of low-temperature solution-processed
                    all-oxide flexible electronics. ACS. Nano. 2014, 8, 9680-6.  DOI  PubMed
               73.       Bong, H.; Lee, W. H.; Lee, D. Y.; Kim, B. J.; Cho, J. H.; Cho, K. High-mobility low-temperature ZnO transistors with low-voltage
                    operation. Appl. Phys. Lett. 2010, 96, 192115.  DOI
               74.       Lim, W.; Jang, J. H.; Kim, S.; et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene
                    terephthalate substrates. Appl. Phys. Lett. 2008, 93, 082102.  DOI
               75.       Han, D.; Chen, Z.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. High-performance flexible tin-zinc-oxide thin-film transistors fabricated
                    on plastic substrates. IEEE. Trans. Electron. Devices. 2016, 63, 3360-3.  DOI
               76.       Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc.
                    Chem. Res. 2014, 47, 1019-28.  DOI  PubMed
               77.       Smith, J. T.; Shah, S. S.; Goryll, M.; Stowell, J. R.; Allee, D. R. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO
   199   200   201   202   203   204   205   206   207   208   209