Page 204 - Read Online
P. 204
Page 34 of 39 Jeon et al. Soft Sci. 2025, 5, 1 https://dx.doi.org/10.20517/ss.2024.35
48. Hua, Q.; Shen, G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev.
2024, 53, 1316-53. DOI
49. Wang, X.; Qi, L.; Yang, H.; Rao, Y.; Chen, H. Stretchable synaptic transistors based on the field effect for flexible neuromorphic
electronics. Soft. Sci. 2023, 3, 15. DOI
50. Na, B. S.; Jung, S.; Moon, Y. G.; et al. InGaZnO-based stretchable ferroelectric memory transistor using patterned polyimide/
polydimethylsiloxane hybrid substrate. J. Nanosci. Nanotechnol. 2016, 16, 10280-3. DOI
51. Cantarella, G.; Costanza, V.; Ferrero, A.; et al. Design of engineered elastomeric substrate for stretchable active devices and sensors.
Adv. Funct. Mater. 2018, 28, 1705132. DOI
52. Park, K.; Lee, D.; Kim, B.; et al. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 2010, 20, 3577-82. DOI
53. Kim, Y. H.; Lee, E.; Um, J. G.; Mativenga, M.; Jang, J. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius
for stretchable electronics. Sci. Rep. 2016, 6, 25734. DOI PubMed PMC
54. Kim, J. O.; Hur, J. S.; Kim, D.; et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the
stretchable transistor applications. Adv. Funct. Mater. 2020, 30, 1906647. DOI
55. Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field
effect transistor. J. Mater. Res. 2014, 29, 1585-96. DOI
56. Heo, J. S.; Jeon, S. P.; Kim, I.; Lee, W.; Kim, Y. H.; Park, S. K. Suppression of interfacial disorders in solution-processed metal
oxide thin-film transistors by Mg doping. ACS. Appl. Mater. Interfaces. 2019, 11, 48054-61. DOI PubMed
57. Jeon, S. P.; Heo, J. S.; Kim, I.; Kim, Y. H.; Park, S. K. Enhanced interfacial integrity of amorphous oxide thin-film transistors by
elemental diffusion of ternary oxide semiconductors. ACS. Appl. Mater. Interfaces. 2020, 12, 57996-8004. DOI PubMed
58. Li, H.; Qu, M.; Zhang, Q. Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors. IEEE.
Electron. Device. Lett. 2013, 34, 1268-70. DOI
59. Lee, J.; Choi, C. H.; Kim, T.; et al. Hydrogen-doping-enabled boosting of the carrier mobility and stability in amorphous IGZTO
transistors. ACS. Appl. Mater. Interfaces. 2022, 14, 57016-27. DOI
60. Banger, K. K.; Peterson, R. L.; Mori, K.; Yamashita, Y.; Leedham, T.; Sirringhaus, H. High performance, low temperature solution-
processed barium and strontium doped oxide thin film transistors. Chem. Mater. 2014, 26, 1195-203. DOI PubMed PMC
61. Lee, S.; Jeong, D.; Mativenga, M.; Jang, J. Highly robust bendable oxide thin-film transistors on polyimide substrates via mesh and
strip patterning of device layers. Adv. Funct. Mater. 2017, 27, 1700437. DOI
62. Lee, G. J.; Heo, S. J.; Lee, S.; et al. Stress release effect of micro-hole arrays for flexible electrodes and thin film transistors. ACS.
Appl. Mater. Interfaces. 2020, 12, 19226-34. DOI PubMed
63. Yuan, X.; Dou, W.; Gan, X.; et al. Junctionless electric-double-layer thin-film transistors with logic functions. Phys. Status. Solidi.
RRL. 2023, 17, 2200480. DOI
64. Jiang, J.; Sun, J.; Dou, W.; Wan, Q. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE. Electron.
Device. Lett. 2012, 33, 65-7. DOI
65. Zhou, J.; Wu, G.; Guo, L.; Zhu, L.; Wan, Q. Flexible transparent junctionless TFTs With oxygen-tuned indium-zinc-oxide channels.
IEEE. Electron. Device. Lett. 2013, 34, 888-90. DOI
66. Yuan, X.; Tan, Y.; Lei, L.; et al. Junctionless electric-double-layer TFTs on paper substrate. ECS. J. Solid. State. Sci. Technol. 2021,
10, 045004. DOI
67. Lee, S.; Shin, J.; Jang, J. Top interface engineering of flexible oxide thin-film transistors by splitting active layer. Adv. Funct. Mater.
2017, 27, 1604921. DOI
68. Nakata, M.; Takechi, K.; Eguchi, T.; Tokumitsu, E.; Yamaguchi, H.; Kaneko, S. Effects of thermal annealing on ZnO thin-film
transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn. J. Appl. Phys.
2009, 48, 081608. DOI
69. Zhang, J.; Liu, Y.; Guo, L.; et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J. Mater. Sci.
Technol. 2015, 31, 171-4. DOI
70. Cantarella, G.; Ishida, K.; Petti, L.; et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and
fabrication study. IEEE. Electron. Device. Lett. 2016, 37, 1582-5. DOI
71. Song, K.; Noh, J.; Jun, T.; Jung, Y.; Kang, H. Y.; Moon, J. Fully flexible solution-deposited zno thin-film transistors. Adv. Mater.
2010, 22, 4308-12. DOI PubMed
72. Rim, Y. S.; Chen, H.; Liu, Y.; Bae, S. H.; Kim, H. J.; Yang, Y. Direct light pattern integration of low-temperature solution-processed
all-oxide flexible electronics. ACS. Nano. 2014, 8, 9680-6. DOI PubMed
73. Bong, H.; Lee, W. H.; Lee, D. Y.; Kim, B. J.; Cho, J. H.; Cho, K. High-mobility low-temperature ZnO transistors with low-voltage
operation. Appl. Phys. Lett. 2010, 96, 192115. DOI
74. Lim, W.; Jang, J. H.; Kim, S.; et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene
terephthalate substrates. Appl. Phys. Lett. 2008, 93, 082102. DOI
75. Han, D.; Chen, Z.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. High-performance flexible tin-zinc-oxide thin-film transistors fabricated
on plastic substrates. IEEE. Trans. Electron. Devices. 2016, 63, 3360-3. DOI
76. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc.
Chem. Res. 2014, 47, 1019-28. DOI PubMed
77. Smith, J. T.; Shah, S. S.; Goryll, M.; Stowell, J. R.; Allee, D. R. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO

