Page 207 - Read Online
P. 207

Jeon et al. Soft Sci. 2025, 5, 1  https://dx.doi.org/10.20517/ss.2024.35        Page 37 of 39

                                                                                 2
               136.      Sheng, J.; Hong, T.; Lee, H. M.; et al. Amorphous IGZO TFT with high mobility of ~70 cm /(V s) via vertical dimension control
                    using PEALD. ACS. Appl. Mater. Interfaces. 2019, 11, 40300-9.  DOI  PubMed
               137.      Jo, J. W.; Kim, Y. H.; Park, J.; et al. Ultralow-temperature solution-processed aluminum oxide dielectrics via local structure control
                    of nanoclusters. ACS. Appl. Mater. Interfaces. 2017, 9, 35114-24.  DOI  PubMed
               138.      Hsu, H.; Chang, C.; Cheng, C. Room-temperature flexible thin film transistor with high mobility. Curr. Appl. Phys. 2013, 13, 1459-
                    62.  DOI
               139.      Hsu, H.; Chang, C.; Cheng, C. A flexible IGZO thin-film transistor with stacked TiO -based dielectrics fabricated at room
                                                                                2
                    temperature. IEEE. Electron. Device. Lett. 2013, 34, 768-70.  DOI
               140.      Jo, J. W.; Kim, K. H.; Kim, J.; Ban, S. G.; Kim, Y. H.; Park, S. K. High-mobility and hysteresis-free flexible oxide thin-film
                    transistors and circuits by using bilayer sol-gel gate dielectrics. ACS. Appl. Mater. Interfaces. 2018, 10, 2679-87.  DOI  PubMed
               141.      Yang, W.; Song, K.; Jung, Y.; Jeong, S.; Moon, J. Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance
                    flexible transparent thin film transistors. J. Mater. Chem. C. 2013, 1, 4275-82.  DOI
               142.      Xiao, P.; Dong, T.; Lan, L.; et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide
                    channel layer. Phys. Status. Solidi. RRL. 2016, 10, 493-7.  DOI
               143.      Jo, J. W.; Kim, J.; Kim, K. T.; et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-
                    oxide dielectrics and semiconductors. Adv. Mater. 2015, 27, 1182-8.  DOI  PubMed
               144.      Kim, H.; Kim, T.; Kang, Y.; et al. Sub-volt metal-oxide thin-film transistors enabled by solution-processed high-k Gd-doped HfO   2
                    dielectric films. Mat. Sci. Semicon. Proc. 2023, 166, 107746.  DOI
               145.      Kim, J.; Choi, S.; Jo, J.; Park, S. K.; Kim, Y. Solution-processed lanthanum-doped Al O  gate dielectrics for high-mobility metal-
                                                                              3
                                                                             2
                    oxide thin-film transistors. Thin. Solid. Films. 2018, 660, 814-8.  DOI
               146.      Kim, J.; Kim, M.; Kang, Y.; et al. Photoactivated high-k lanthanum oxide-aluminum oxide (La O –Al O ) alloy-type gate dielectrics
                                                                                 2  3  2  3
                    for low-voltage-operating flexible transistors. J. Alloys. Compd. 2020, 842, 155671.  DOI
               147.      Zhu, Y.; Liu, G.; Xin, Z.; Fu, C.; Wan, Q.; Shan, F. Solution-processed, electrolyte-gated In O  flexible synaptic transistors for brain-
                                                                               2  3
                    inspired neuromorphic applications. ACS. Appl. Mater. Interfaces. 2020, 12, 1061-8.  DOI  PubMed
               148.      Samanta, C.; Ghimire, R. R.; Ghosh, B. Fabrication of amorphous indium–gallium– zinc–oxide thin-film transistor on flexible
                    substrate using a polymer electrolyte as gate dielectric. IEEE. Trans. Electron. Devices. 2018, 65, 2827-32.  DOI
               149.      Hur, J. S.; Kim, J. O.; Kim, H. A.; Jeong, J. K. Stretchable polymer gate dielectric by ultraviolet-assisted hafnium oxide doping at low
                    temperature for high-performance indium gallium tin oxide transistors. ACS. Appl. Mater. Interfaces. 2019, 11, 21675-85.  DOI
                    PubMed
               150.      Yu, M. C.; Ruan, D. B.; Liu, P. T.; et al. High performance transparent a-IGZO thin film transistors with ALD-HfO  gate insulator on
                                                                                              2
                    colorless polyimide substrate. IEEE. Trans. Nanotechnol. 2020, 19, 481-5.  DOI
               151.      Kim, C. Y.; Park, J. H.; Kim, T. G. Effect of photochemical hydrogen doping on the electrical properties of ZnO thin-film transistors.
                    J. Alloys. Compd. 2018, 732, 300-5.  DOI
               152.      Fernandes, C.; Santa, A.; Santos, Â.; et al. A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors. Adv.
                    Electron. Mater. 2018, 4, 1800032.  DOI
               153.      Abliz, A.; Wang, J.; Xu, L.; et al. Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin
                    InGaZnO:H layer. Appl. Phys. Lett. 2016, 108, 213501.  DOI
               154.      Kang, Y.; Ahn, B. D.; Song, J. H.; et al. Hydrogen bistability as the origin of photo-bias-thermal instabilities in amorphous oxide
                    semiconductors. Adv. Electron. Mater. 2015, 1, 1400006.  DOI
               155.      Wang, H.; He, J.; Xu, Y.; et al. Impact of hydrogen dopant incorporation on InGaZnO, ZnO and In O  thin film transistors. Phys.
                                                                                      2
                                                                                       3
                    Chem. Chem. Phys. 2020, 22, 1591-7.  DOI
               156.      Kang, B. H.; Kim, W. G.; Chung, J.; Lee, J. H.; Kim, H. J. Simple hydrogen plasma doping process of amorphous indium gallium
                    zinc oxide-based phototransistors for visible light detection. ACS. Appl. Mater. Interfaces. 2018, 10, 7223-30.  DOI  PubMed
               157.      Abliz, A.; Gao, Q.; Wan, D.; et al. Effects of nitrogen and hydrogen codoping on the electrical performance and reliability of
                    InGaZnO thin-film transistors. ACS. Appl. Mater. Interfaces. 2017, 9, 10798-804.  DOI  PubMed
               158.      Liu, P.; Chang, C.; Fuh, C.; Liao, Y.; Sze, S. M. Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film
                    transistors. J. Display. Technol. 2016, 12, 1070-7.  DOI
               159.      Xie, H.; Wu, Q.; Xu, L.; Zhang, L.; Liu, G.; Dong, C. Nitrogen-doped amorphous oxide semiconductor thin film transistors with
                    double-stacked channel layers. Appl. Surf. Sci. 2016, 387, 237-43.  DOI
               160.      Ding, X.; Yang, J.; Qin, C.; Yang, X.; Ding, T.; Zhang, J. Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer
                    deposition for high-performance ZnON transistors. IEEE. Trans. Electron. Devices. 2018, 65, 3283-90.  DOI
               161.      Kim, D. G.; Choi, H.; Kim, Y. S.; et al. Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability.
                    ACS. Appl. Mater. Interfaces. 2023, 15, 31652-63.  DOI  PubMed
               162.      Seo, J. S.; Jeon, J. H.; Hwang, Y. H.; et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors
                    fabricated on plastic film at low temperature. Sci. Rep. 2013, 3, 2085.  DOI  PubMed  PMC
               163.      Saha, J. K.; Ali, A.; Bukke, R. N.; Kim, Y. G.; Islam, M. M.; Jang, J. Performance improvement for spray-coated ZnO TFT by F
                    doping with spray-coated Zr–Al–O gate insulator. IEEE. Trans. Electron. Devices. 2021, 68, 1063-9.  DOI
               164.      Yin, X.; Chen, Y.; Li, G.; et al. Analysis of low frequency noise in in situ fluorine-doped ZnSnO thin-film transistors. AIP. Advances.
                    2021, 11, 045326.  DOI
   202   203   204   205   206   207   208   209   210   211   212