Page 205 - Read Online
P. 205

Jeon et al. Soft Sci. 2025, 5, 1  https://dx.doi.org/10.20517/ss.2024.35        Page 35 of 39

                    sensing layer. IEEE. Sensors. J. 2014, 14, 937-8.  DOI
               78.       Kim, S.; Park, M.; Yun, D.; Lee, W.; Kim, G.; Yoon, S. High performance and stable flexible memory thin-film transistors using In–
                    Ga–Zn–O channel and ZnO charge-trap layers on poly(ethylene naphthalate) substrate. IEEE. Trans. Electron. Devices. 2016, 63,
                    1557-64.  DOI
               79.       Kim, J.; Nam, T.; Lim, S. J.; et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device
                    properties. Appl. Phys. Lett. 2011, 98, 142113.  DOI
               80.       Jin, S. H.; Kang, S. K.; Cho, I. T.; et al. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc
                    oxide. ACS. Appl. Mater. Interfaces. 2015, 7, 8268-74.  DOI  PubMed
               81.       Cantarella, G.; Munzenrieder, N.; Petti, L.; et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3%
                    strain. IEEE. Electron. Device. Lett. 2015, 36, 781-3.  DOI
               82.       Hsu, H.; Chiu, Y.; Chiou, P.; Cheng, C. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin
                    film devices using titanium oxide materials fabricated at a very low temperature of 100°C. J. Alloys. Compd. 2015, 643, S133-6.  DOI
               83.       Oh, H.; Cho, K.; Park, S.; Kim, S. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate
                    structure. Microelectron. Eng. 2016, 159, 179-83.  DOI
               84.       Kim, J.; Fuentes-hernandez, C.; Hwang, D.; Potscavage, J. W, Cheun H, Kippelen B. Vertically stacked hybrid organic–inorganic
                    complementary inverters with low operating voltage on flexible substrates. Org. Electron. 2011, 12, 45-50.  DOI
               85.       Jin, J.; Ko, J. H.; Yang, S.; Bae, B. S. Rollable transparent glass-fabric reinforced composite substrate for flexible devices. Adv.
                    Mater. 2010, 22, 4510-5.  DOI  PubMed
               86.       Lim, W.; Douglas, E. A.; Kim, S.; et al. High mobility InGaZnO4 thin-film transistors on paper. Appl. Phys. Lett. 2009, 94, 072103.
                    DOI
               87.       Martins, R.; Ferreira, I.; Fortunato, E. Electronics with and on paper. Phys. Status. Solidi. RRL. 2011, 5, 332-5.  DOI
               88.       Choi, N.; Khan, S. A.; Ma, X.; Hatalis, M. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper
                    substrate. Electrochem. Solid. State. Lett. 2011, 14, H247.  DOI
               89.       Wu, G. D.; Zhang, J.; Wan, X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al O  proton conducting films on
                                                                                      2  3
                    paper substrates. Chinese. Phys. Lett. 2014, 31, 108505.  DOI
               90.       Mahmoudabadi, F.; Ma, X.; Hatalis, M. K.; Shah, K. N.; Levendusky, T. L. Amorphous IGZO TFTs and circuits on conformable
                    aluminum substrates. Solid. State. Electron. 2014, 101, 57-62.  DOI
               91.       Park, I.; Jeong, C.; Cho, I.; et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors.
                    Semicond. Sci. Technol. 2012, 27, 105019.  DOI
               92.       Tang, X.; Zhao, Y.; Li, K.; et al. In situ growth of (−201) fiber-textured β-Ga O  semiconductor tape for flexible thin-film transistor.
                                                                      2  3
                    Adv. Electron. Mater. 2024, 2400046.  DOI
               93.       Hosono, H. Transparent oxide semiconductors: fundamentals and recent progress. In: Facchetti A, Marks TJ, editors. Transparent
                    electronics: from synthesis to applications. Wiley; 2010. pp. 31-59.  DOI
               94.       He, Y.; Wang, X.; Gao, Y.; Hou, Y.; Wan, Q. Oxide-based thin film transistors for flexible electronics. J. Semicond. 2018, 39,
                    011005.  DOI
               95.       Kim, H. J.; Park, K.; Kim, H. J. High-performance vacuum-processed metal oxide thin-film transistors: a review of recent
                    developments. J. Soc. Info. Display. 2020, 28, 591-622.  DOI
               96.       Zhang, X.; Wang, B.; Huang, W.; et al. Synergistic boron doping of semiconductor and dielectric layers for high-performance metal
                    oxide transistors: interplay of experiment and theory. J. Am. Chem. Soc. 2018, 140, 12501-10.  DOI  PubMed
               97.       Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In
                    –Ga–Zn–O thin-film transistors. Appl. Phys. Lett. 2009, 95, 013502.  DOI
               98.       Bukke, R. N.; Mude, N. N.; Bae, J.; Jang, J. Nano-scale Ga O  interface engineering for high-performance of ZnO-based thin-film
                                                             3
                                                           2
                    transistors. ACS. Appl. Mater. Interfaces. 2022, 14, 41508-19.  DOI  PubMed
               99.       Tang, T.; Dacha, P.; Haase, K.; et al. Analysis of the annealing budget of metal oxide thin-film transistors prepared by an aqueous
                    blade-coating process. Adv. Funct. Mater. 2023, 33, 2207966.  DOI
               100.      Lee, M.; Jo, J. W.; Kim, Y. J.; et al. Corrugated heterojunction metal-oxide thin-film transistors with high electron mobility via
                    vertical interface manipulation. Adv. Mater. 2018, 30, e1804120.  DOI  PubMed
               101.      Bhatti, G.; Agrawal, Y.; Palaparthy, V.; Kavicharan, M.; Agrawal, M. Flexible electronics: a critical review. In: Agrawal Y,
                    Mummaneni K, Sathyakam PU, editors. Interconnect technologies for integrated circuits and flexible electronics. Singapore: Springer
                    Nature; 2024. pp. 221-48.  DOI
               102.      Han, K.; Lee, W.; Kim, Y.; Kim, J.; Choi, B.; Park, J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for
                    wearable electronic application. ACS. Appl. Electron. Mater. 2021, 3, 5037-47.  DOI
               103.      Ribes, G.; Mitard, J.; Denais, M.; et al. Review on high-k dielectrics reliability issues. IEEE. Trans. Device. Mater. Relib. 2005, 5, 5-
                    19.  DOI
               104.      Choi, J.; Mao, Y.; Chang, J. Development of hafnium based high-k materials - a review. Mat. Sci. Eng. R. 2011, 72, 97-136.  DOI
               105.      Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and
                    stretchable electronics. Chem. Rev. 2018, 118, 5690-754.  DOI
               106.      Huang, X.; Jiang, P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater.
                    2015, 27, 546-54.  DOI  PubMed
   200   201   202   203   204   205   206   207   208   209   210