Page 206 - Read Online
P. 206
Page 36 of 39 Jeon et al. Soft Sci. 2025, 5, 1 https://dx.doi.org/10.20517/ss.2024.35
107. Nadaud, N.; Lequeux, N.; Nanot, M.; Jové, J.; Roisnel, T. Structural studies of tin-doped indium oxide (ITO) and In Sn O . J. Solid.
3
4
12
State. Chem. 1998, 135, 140-8. DOI
108. Sun, X.; Han, J.; Xiao, Z.; et al. High performance indium-tin-zinc-oxide thin-film transistor with hexamethyldisilazane passivation.
ACS. Appl. Electron. Mater. 2024, 6, 2442-8. DOI
109. Kim, M. G.; Kim, H. S.; Ha, Y. G.; et al. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film
transistors. J. Am. Chem. Soc. 2010, 132, 10352-64. DOI PubMed
110. Ok, K. C.; Jeong, H. J.; Kim, H. S.; Park, J. S. Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50
2
cm /Vs. IEEE. Electron. Device. Lett. 2015, 36, 38-40. DOI
111. Tiwari, N.; Rajput, M.; John, R. A.; Kulkarni, M. R.; Nguyen, A. C.; Mathews, N. Indium tungsten oxide thin films for flexible high-
performance transistors and neuromorphic electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 30506-13. DOI PubMed
112. Chang, S.; Shih, S.; Lin, G. R. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. J. Nanomaterials. 2012,
2012, 127646. DOI
113. Park, E.; Lee, H. M.; Kim, Y.; Jeong, H.; Park, J.; Park, J. Transparent flexible high mobility TFTs based on ZnON semiconductor
with dual gate structure. IEEE. Electron. Device. Lett. 2020, 41, 401-4. DOI
114. Bukke R, Naik Mude N, Mobaidul Islam M, Jang J. Improvement of metal-oxide films by post atmospheric Ar/O plasma treatment
2
for thin film transistors with high mobility and excellent stability. Appl. Surf. Sci. 2021, 568, 150947. DOI
115. Shi, Y.; Shiah, Y.; Sim, K.; Sasase, M.; Kim, J.; Hosono, H. High-performance a-ITZO TFTs with high bias stability enabled by self-
aligned passivation using a-GaOx. Appl. Phys. Lett. 2022, 121, 212101. DOI
116. Noh, J.; Kim, H.; Nahm, H.; et al. Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors. J.
Appl. Phys. 2013, 113, 183706. DOI
117. Ryu, M. K.; Yang, S.; Park, S. K.; Hwang, C.; Jeong, J. K. High performance thin film transistor with cosputtered amorphous Zn–In–
Sn–O channel: combinatorial approach. Appl. Phys. Lett. 2009, 95, 072104. DOI
118. Li, T.; Liu, X.; Ren, J.; et al. High-mobility InSnZnO thin film transistors via introducing water vapor sputtering gas. ACS. Appl.
Mater. Interfaces. 2024, 16, 31237-46. DOI PubMed
119. Ok, K. C.; Lim, J. H.; Jeong, H. J.; Lee, H. M.; Rim, Y. S.; Park, J. S. Photothermally activated nanocrystalline oxynitride with
superior performance in flexible field-effect transistors. ACS. Appl. Mater. Interfaces. 2018, 10, 2709-15. DOI PubMed
120. Takagi, A.; Nomura, K.; Ohta, H.; et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO .
4
Thin. Solid. Films. 2005, 486, 38-41. DOI
121. Lee, S.; Nathan, A.; Ye, Y.; Guo, Y.; Robertson, J. Localized tail states and electron mobility in amorphous ZnON thin film
transistors. Sci. Rep. 2015, 5, 13467. DOI PubMed PMC
122. Kim, H. S.; Jeon, S. H.; Park, J. S.; et al. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film
transistors. Sci. Rep. 2013, 3, 1459. DOI PubMed PMC
123. Park, C.; Jeon, S.; Park, J. B.; et al. High-performance ITO/a-IGZO heterostructure TFTs enabled by thickness-dependent carrier
concentration and band alignment manipulation. Ceram. Int. 2023, 49, 5905-14. DOI
124. Jung, S. W.; Koo, J. B.; Park, C. W.; Na, B. S.; Oh, J. Y.; Lee, S. S. Fabrication of stretchable organic-inorganic hybrid thin-film
transistors on polyimide stiff-island structures. J. Nanosci. Nanotechnol. 2015, 15, 7526-30. DOI PubMed
125. Lin, Y. H.; Faber, H.; Labram, J. G.; et al. High electron mobility thin-film transistors based on solution-processed semiconducting
metal oxide heterojunctions and quasi-superlattices. Adv Sci 2015;2:1500058. DOI
126. Choi, I. M.; Kim, M. J.; On, N.; et al. Achieving high mobility and excellent stability in amorphous In–Ga–Zn–Sn–O thin-film
transistors. IEEE. Trans. Electron. Devices. 2020, 67, 1014-20. DOI
127. Chang, Y.; Bukke, R. N.; Bae, J.; Jang, J. Low-temperature solution-processed HfZrO gate insulator for high-performance of flexible
LaZnO thin-film transistor. Nanomaterials 2023, 13, 2410. DOI PubMed PMC
128. Liu, X.; Wang, C.; Cai, B.; et al. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique
performance transistors. Nano. Lett. 2012, 12, 3596-601. DOI
129. Divya, M.; Cherukupally, N.; Gogoi, S. K.; et al. Super flexible and high mobility inorganic/organic composite semiconductors for
printed electronics on polymer substrates. Adv. Mater. Technol. 2023, 8, 2300256. DOI
130. Kim, K. S.; Kim, M. S.; Chung, J.; Kim, D.; Lee, I. S.; Kim, H. J. Polyimide-doped indium-gallium-zinc oxide-based transparent and
flexible phototransistor for visible light detection. ACS. Appl. Mater. Interfaces. 2022, 14, 21150-8. DOI PubMed
131. Na, J. W.; Kim, H. J.; Hong, S.; Kim, H. J. Plasma polymerization enabled polymer/metal-oxide hybrid semiconductors for wearable
electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 37207-15. DOI PubMed
132. Lee, S.; Jeong, H.; Han, K.; Baek, G.; Park, J. An organic–inorganic hybrid semiconductor for flexible thin film transistors using
molecular layer deposition. J. Mater. Chem. C. 2021, 9, 4322-9. DOI
133. Zhu, L.; Gao, Y.; Li, X.; Sun, X.; Zhang, J. Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process.
J. Mater. Res. 2014, 29, 1620-5. DOI
134. Sheng, J.; Lee, H. J.; Oh, S.; Park, J. S. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-
temperature atomic layer deposition. ACS. Appl. Mater. Interfaces. 2016, 8, 33821-8. DOI PubMed
135. Chen, X.; Zhang, G.; Wan, J.; et al. Transparent and flexible thin-film transistors with high performance prepared at ultralow
temperatures by atomic layer deposition. Adv. Electron. Mater. 2019, 5, 1800583. DOI

