Page 206 - Read Online
P. 206

Page 36 of 39                           Jeon et al. Soft Sci. 2025, 5, 1  https://dx.doi.org/10.20517/ss.2024.35

               107.      Nadaud, N.; Lequeux, N.; Nanot, M.; Jové, J.; Roisnel, T. Structural studies of tin-doped indium oxide (ITO) and In Sn O . J. Solid.
                                                                                                 3
                                                                                               4
                                                                                                   12
                    State. Chem. 1998, 135, 140-8.  DOI
               108.      Sun, X.; Han, J.; Xiao, Z.; et al. High performance indium-tin-zinc-oxide thin-film transistor with hexamethyldisilazane passivation.
                    ACS. Appl. Electron. Mater. 2024, 6, 2442-8.  DOI
               109.      Kim, M. G.; Kim, H. S.; Ha, Y. G.; et al. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film
                    transistors. J. Am. Chem. Soc. 2010, 132, 10352-64.  DOI  PubMed
               110.      Ok, K. C.; Jeong, H. J.; Kim, H. S.; Park, J. S. Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50
                      2
                    cm /Vs. IEEE. Electron. Device. Lett. 2015, 36, 38-40.  DOI
               111.      Tiwari, N.; Rajput, M.; John, R. A.; Kulkarni, M. R.; Nguyen, A. C.; Mathews, N. Indium tungsten oxide thin films for flexible high-
                    performance transistors and neuromorphic electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 30506-13.  DOI  PubMed
               112.      Chang, S.; Shih, S.; Lin, G. R. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. J. Nanomaterials. 2012,
                    2012, 127646.  DOI
               113.      Park, E.; Lee, H. M.; Kim, Y.; Jeong, H.; Park, J.; Park, J. Transparent flexible high mobility TFTs based on ZnON semiconductor
                    with dual gate structure. IEEE. Electron. Device. Lett. 2020, 41, 401-4.  DOI
               114.      Bukke R, Naik Mude N, Mobaidul Islam M, Jang J. Improvement of metal-oxide films by post atmospheric Ar/O  plasma treatment
                                                                                              2
                    for thin film transistors with high mobility and excellent stability. Appl. Surf. Sci. 2021, 568, 150947.  DOI
               115.      Shi, Y.; Shiah, Y.; Sim, K.; Sasase, M.; Kim, J.; Hosono, H. High-performance a-ITZO TFTs with high bias stability enabled by self-
                    aligned passivation using a-GaOx. Appl. Phys. Lett. 2022, 121, 212101.  DOI
               116.      Noh, J.; Kim, H.; Nahm, H.; et al. Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors. J.
                    Appl. Phys. 2013, 113, 183706.  DOI
               117.      Ryu, M. K.; Yang, S.; Park, S. K.; Hwang, C.; Jeong, J. K. High performance thin film transistor with cosputtered amorphous Zn–In–
                    Sn–O channel: combinatorial approach. Appl. Phys. Lett. 2009, 95, 072104.  DOI
               118.      Li, T.; Liu, X.; Ren, J.; et al. High-mobility InSnZnO thin film transistors via introducing water vapor sputtering gas. ACS. Appl.
                    Mater. Interfaces. 2024, 16, 31237-46.  DOI  PubMed
               119.      Ok, K. C.; Lim, J. H.; Jeong, H. J.; Lee, H. M.; Rim, Y. S.; Park, J. S. Photothermally activated nanocrystalline oxynitride with
                    superior performance in flexible field-effect transistors. ACS. Appl. Mater. Interfaces. 2018, 10, 2709-15.  DOI  PubMed
               120.      Takagi, A.; Nomura, K.; Ohta, H.; et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO .
                                                                                                         4
                    Thin. Solid. Films. 2005, 486, 38-41.  DOI
               121.      Lee, S.; Nathan, A.; Ye, Y.; Guo, Y.; Robertson, J. Localized tail states and electron mobility in amorphous ZnON thin film
                    transistors. Sci. Rep. 2015, 5, 13467.  DOI  PubMed  PMC
               122.      Kim, H. S.; Jeon, S. H.; Park, J. S.; et al. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film
                    transistors. Sci. Rep. 2013, 3, 1459.  DOI  PubMed  PMC
               123.      Park, C.; Jeon, S.; Park, J. B.; et al. High-performance ITO/a-IGZO heterostructure TFTs enabled by thickness-dependent carrier
                    concentration and band alignment manipulation. Ceram. Int. 2023, 49, 5905-14.  DOI
               124.      Jung, S. W.; Koo, J. B.; Park, C. W.; Na, B. S.; Oh, J. Y.; Lee, S. S. Fabrication of stretchable organic-inorganic hybrid thin-film
                    transistors on polyimide stiff-island structures. J. Nanosci. Nanotechnol. 2015, 15, 7526-30.  DOI  PubMed
               125.      Lin, Y. H.; Faber, H.; Labram, J. G.; et al. High electron mobility thin-film transistors based on solution-processed semiconducting
                    metal oxide heterojunctions and quasi-superlattices. Adv Sci 2015;2:1500058. DOI
               126.      Choi, I. M.; Kim, M. J.; On, N.; et al. Achieving high mobility and excellent stability in amorphous In–Ga–Zn–Sn–O thin-film
                    transistors. IEEE. Trans. Electron. Devices. 2020, 67, 1014-20.  DOI
               127.      Chang, Y.; Bukke, R. N.; Bae, J.; Jang, J. Low-temperature solution-processed HfZrO gate insulator for high-performance of flexible
                    LaZnO thin-film transistor. Nanomaterials 2023, 13, 2410.  DOI  PubMed  PMC
               128.      Liu, X.; Wang, C.; Cai, B.; et al. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique
                    performance transistors. Nano. Lett. 2012, 12, 3596-601.  DOI
               129.      Divya, M.; Cherukupally, N.; Gogoi, S. K.; et al. Super flexible and high mobility inorganic/organic composite semiconductors for
                    printed electronics on polymer substrates. Adv. Mater. Technol. 2023, 8, 2300256.  DOI
               130.      Kim, K. S.; Kim, M. S.; Chung, J.; Kim, D.; Lee, I. S.; Kim, H. J. Polyimide-doped indium-gallium-zinc oxide-based transparent and
                    flexible phototransistor for visible light detection. ACS. Appl. Mater. Interfaces. 2022, 14, 21150-8.  DOI  PubMed
               131.      Na, J. W.; Kim, H. J.; Hong, S.; Kim, H. J. Plasma polymerization enabled polymer/metal-oxide hybrid semiconductors for wearable
                    electronics. ACS. Appl. Mater. Interfaces. 2018, 10, 37207-15.  DOI  PubMed
               132.      Lee, S.; Jeong, H.; Han, K.; Baek, G.; Park, J. An organic–inorganic hybrid semiconductor for flexible thin film transistors using
                    molecular layer deposition. J. Mater. Chem. C. 2021, 9, 4322-9.  DOI
               133.      Zhu, L.; Gao, Y.; Li, X.; Sun, X.; Zhang, J. Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process.
                    J. Mater. Res. 2014, 29, 1620-5.  DOI
               134.      Sheng, J.; Lee, H. J.; Oh, S.; Park, J. S. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-
                    temperature atomic layer deposition. ACS. Appl. Mater. Interfaces. 2016, 8, 33821-8.  DOI  PubMed
               135.      Chen, X.; Zhang, G.; Wan, J.; et al. Transparent and flexible thin-film transistors with high performance prepared at ultralow
                    temperatures by atomic layer deposition. Adv. Electron. Mater. 2019, 5, 1800583.  DOI
   201   202   203   204   205   206   207   208   209   210   211