Page 208 - Read Online
P. 208

Page 38 of 39                           Jeon et al. Soft Sci. 2025, 5, 1  https://dx.doi.org/10.20517/ss.2024.35

               165.      Ruan, D.; Liu, P.; Chiu, Y.; et al. Performance improvements of tungsten and zinc doped indium oxide thin film transistor by fluorine
                    based double plasma treatment with a high-K gate dielectric. Thin. Solid. Films. 2018, 665, 117-22.  DOI
               166.      Yin, X.; Lin, D.; Zhong, W.; et al. In-situ fluorine-doped ZnSnO thin film and thin-film transistor. Solid. State. Electron. 2023, 208,
                    108726.  DOI
               167.      Qian, L. X.; Lai, P. T. Fluorinated InGaZnO thin-film transistor with HfLaO gate dielectric. IEEE. Electron. Device. Lett. 2014, 35,
                    363-5.  DOI
               168.      Miyakawa, M.; Nakata, M.; Tsuji, H.; Iino, H.; Fujisaki, Y. Impact of fluorine doping on solution-processed In–Ga–Zn–O thin-film
                    transistors using an efficient aqueous route. AIP. Advances. 2020, 10, 065004.  DOI
               169.      Hanyu, Y.; Domen, K.; Nomura, K.; et al. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors.
                    Appl. Phys. Lett. 2013, 103, 202114.  DOI
               170.      Gaspar, D.; Pereira, L.; Gehrke, K.; Galler, B.; Fortunato, E.; Martins, R. High mobility hydrogenated zinc oxide thin films. Sol.
                    Energy. Mat. Solar. C. 2017, 163, 255-62.  DOI
               171.      Tsao, S.; Chang, T.; Huang, S.; et al. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors.
                    Solid. State. Electron. 2010, 54, 1497-9.  DOI
               172.      Kim, H. J.; Park, S. Y.; Jung, H. Y.; et al. Role of incorporated hydrogen on performance and photo-bias instability of indium gallium
                    zinc oxide thin film transistors. J. Phys. D. Appl. Phys. 2013, 46, 055104.  DOI
               173.      Li, J.; Ju, S.; Tang, Y.; et al. Remarkable bias-stress stability of ultrathin atomic-layer-deposited indium oxide thin-film transistors
                    enabled by plasma fluorination. Adv. Funct. Mater. 2024, 34, 2401170.  DOI
               174.      Kim, D.; Yoo, K. S.; Kim, H.; Park, J. Impact of N O plasma reactant on PEALD-SiO  insulator for remarkably reliable ALD-oxide
                                                     2
                                                                            2
                    semiconductor TFTs. IEEE. Trans. Electron. Devices. 2022, 69, 3199-205.  DOI
               175.      Raja, J.; Jang, K.; Balaji, N.; choi, W.; Thuy, T. T.; Yi, J. Negative gate-bias temperature stability of N-doped InGaZnO active-layer
                    thin-film transistors. Appl. Phys. Lett. 2013, 102, 083505.  DOI
               176.      Han, Y.; Yan, H.; Tsai, Y.; Li, Y.; Zhang, Q.; Shieh, H. D. Influences of nitrogen doping on the electrical characteristics of indium-
                    zinc-oxide thin film transistors. IEEE. Trans. Device. Mater. Relib. 2016, 16, 642-6.  DOI
               177.      Yu, X.; Zhou, N.; Smith, J.; et al. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel
                    architecture. ACS. Appl. Mater. Interfaces. 2013, 5, 7983-8.  DOI  PubMed
                                                                                             2
               178.      Song, J. H.; Kim, K. S.; Mo, Y. G.; Choi, R.; Jeong, J. K. Achieving high field-effect mobility exceeding 50 cm /Vs in In-Zn-Sn-O
                    thin-film transistors. IEEE. Electron. Device. Lett. 2014, 35, 853-5.  DOI
               179.      Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: a critical review on
                    process improvement and market trend demands. Coatings 2018, 8, 402.  DOI
               180.      Liu, J.; Buchholz, D. B.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. High-performance flexible transparent thin-film transistors using
                    a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv. Mater. 2010, 22, 2333-7.  DOI  PubMed
               181.      Bao, Q.; Chen, C.; Wang, D.; Ji, Q.; Lei, T. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin
                    films. Appl. Surf. Sci. 2005, 252, 1538-44.  DOI
               182.      Ogugua, S. N.; Ntwaeaborwa, O. M.; Swart, H. C. Latest development on pulsed laser deposited thin films for advanced
                    luminescence applications. Coatings 2020, 10, 1078.  DOI
               183.      Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater.
                    Today. 2014, 17, 236-46.  DOI
               184.      Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L. Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous
                    zinc oxide. Appl. Phys. Lett. 2013, 103, 152102.  DOI
               185.      Wilson, S. K.; Hunt, R.; Duffy, B. R. The rate of spreading in spin coating. J. Fluid. Mech. 2000, 413, 65-88.  DOI
                                                                             2
               186.      Habibi, M.; Rahimzadeh, A.; Bennouna, I.; Eslamian, M. Defect-free large-area (25 cm ) light absorbing perovskite thin films made
                    by spray coating. Coatings 2017, 7, 42.  DOI
               187.      Goh, G. L.; Zhang, H.; Chong, T. H.; Yeong, W. Y. 3D printing of multilayered and multimaterial electronics: a review. Adv.
                    Electron. Mater. 2021, 7, 2100445.  DOI
               188.      Huang, K.; Cai, X.; Shang, R.; et al. Printed high-adhesion flexible electrodes based on an interlocking structure for self-powered
                    intelligent movement monitoring. ACS. Appl. Mater. Interfaces. 2023, 15, 58583-92.  DOI  PubMed
               189.      Tan, H. W.; Choong, Y. Y. C.; Kuo, C. N.; Low, H. Y.; Chua, C. K. 3D printed electronics: processes, materials and future trends.
                    Prog. Mater. Sci. 2022, 127, 100945.  DOI
               190.      Park, Y. G.; Yun, I.; Chung, W. G.; Park, W.; Lee, D. H.; Park, J. U. High-resolution 3D printing for electronics. Adv. Sci. 2022, 9,
                    e2104623.  DOI  PubMed  PMC
               191.      Kim, D. H.; Song, J.; Choi, W. M.; et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses
                    to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18675-80.  DOI
               192.      Rockett, A. Semiconductor alloys. In: The materials science of semiconductors. Springer; 2007. pp. 245-268.  DOI
               193.      Park, C. B.; Na, H.; Yoo, S. S.; Park, K. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward
                    bending. Microelectron. Reliab. 2016, 59, 37-43.  DOI
               194.      Dou, W.; Tan, Y. Junctionless dual in-plane-gate thin-film transistors with AND logic function on paper substrates. ACS. Omega.
                    2019, 4, 21417-20.  DOI  PubMed  PMC
               195.      Guo, J.; Liu, J.; Yang, B.; et al. Biodegradable junctionless transistors with extremely simple structure. IEEE. Electron. Device. Lett.
   203   204   205   206   207   208   209   210   211   212   213