Page 107 - Read Online
P. 107

Kim et al. Soft Sci 2024;4:33  https://dx.doi.org/10.20517/ss.2024.28           Page 31 of 31

               129.      Luo W, Zeng C, Du X, et al. Copper thiocyanate/copper iodide based hole transport composites with balanced properties for efficient
                    polymer light-emitting diodes. J Mater Chem C 2018;6:4895-902.  DOI
               130.      Mohan V, Gautam AK, Choudhary SD, et al. Enhanced performance organic light emitting diode with CuI:CuPC composite hole
                    transport layer. IEEE Trans Nanotechnol 2020;19:699-703.  DOI
               131.      Haider SZ, Anwar H, Wang M. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole
                    transport material. Semicond Sci Technol 2018;33:035001.  DOI
               132.      Sun W, Ye S, Rao H, et al. Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar
                    perovskite solar cells. Nanoscale 2016;8:15954-60.  DOI  PubMed
               133.      Hu W, Dall’agnese C, Wang X, et al. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in
                    perovskite solar cells. J Photoch Photobio A 2018;357:36-40.  DOI
               134.      Haider SZ, Anwar H, Manzoor S, Ismail AG, Wang M. A theoretical study for high-performance inverted p-i-n architecture
                    perovskite solar cells with cuprous iodide as hole transport material. Curr Appl Phys 2020;20:1080-9.  DOI
               135.      Khadka DB, Shirai Y, Yanagida M, Miyano K. Ammoniated aqueous precursor ink processed copper iodide as hole transport layer
                    for inverted planar perovskite solar cells. Sol Energy Mat Sol Cells 2020;210:110486.  DOI
               136.      Mahdy B, Isomura M, Kaneko T. Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution method for
                    copper iodide as a hole transport layer. Jpn J Appl Phys 2023;62:SK1016.  DOI
               137.      Aliyaselvam OV, Arith F, Mustafa AN, Chelvanathan P, Azam MA, Amin N. Incorporation of green solvent for low thermal budget
                    flower-like copper(I) iodide (γ-CuI) for high-efficiency solar cell. J Mater Sci Mater Electron 2023;34:10578.  DOI
               138.      Peng Y, Yaacobi-gross N, Perumal AK, et al. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers. Appl
                    Phys Lett 2015;106:243302.  DOI
               139.      Khatun MM, Sunny A, Ahmed SRA. Numerical investigation on performance improvement of WS  thin-film solar cell with copper
                                                                                     2
                    iodide as hole transport layer. Sol Energy 2021;224:956-65.  DOI
               140.      Srivastava M, Alheity MA, Yahya MZA, Singh RC, Gültekin SS. Conduction mechanism and photo-electrochemical performance of
                    copper iodide hole transport material-based perovskite solar cell. J Electron Mater 2023;52:4351-8.  DOI
               141.      Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater
                    2019;31:e1807916.  DOI  PubMed
               142.      Coroa J, Morais Faustino BM, Marques A, et al. Highly transparent copper iodide thin film thermoelectric generator on a flexible
                    substrate. RSC Adv 2019;9:35384-91.  DOI  PubMed  PMC
               143.      Feng R, Tang F, Zhang N, Wang X. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered
                    temperature sensor. ACS Appl Mater Interfaces 2019;11:38616-24.  DOI
               144.      Mulla R, Rabinal MK. Defect-controlled copper iodide: a promising and ecofriendly thermoelectric material. Energy Technol
                    2018;6:1178-85.  DOI
               145.      Klochko N, Zhadan D, Klepikova K, et al. Semi-transparent copper iodide thin films on flexible substrates as p-type thermolegs for a
                    wearable thermoelectric generator. Thin Solid Films 2019;683:34-41.  DOI
               146.      Murmu PP, Karthik V, Liu Z, et al. Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power
                    factor in transparent thermoelectric copper iodide. ACS Appl Energy Mater 2020;3:10037-44.  DOI
               147.      Murmu PP, Kennedy J, Liu Z, Mori T. The role of sulfur valency on thermoelectric properties of sulfur ion implanted copper iodide.
                    J Alloy Compd 2022;921:166103.  DOI
               148.      Bae EJ, Kim J, Han M, Kang YH. Precision doping of iodine for highly conductive copper(I) iodide suitable for the spray-printable
                    thermoelectric power generators. ACS Mater Lett 2023;5:2009-18.  DOI
               149.      Thimont Y, Darnige P, Barnabé A. Development, experimental and simulated performance of copper iodide (γ-CuI) uni-track thin
                    film thermoelectric modules. Appl Surf Sci 2024;649:159071.  DOI
               150.      Vora-ud A, Chaarmart K, Kasemsin W, Boonkirdram S, Seetawan T. Transparent thermoelectric properties of copper iodide thin
                    films. Physica B 2022;625:413527.  DOI
   102   103   104   105   106   107   108   109   110   111   112