Page 104 - Read Online
P. 104

Page 28 of 31                            Kim et al. Soft Sci 2024;4:33  https://dx.doi.org/10.20517/ss.2024.28

               37.       Storm P, Bar MS, Benndorf G, et al. High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser
                    deposition. APL Mater 2020;8:091115.  DOI
               38.       Yang C, Kneiβ M, Lorenz M, Grundmann M. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent
                    conductor with a boosted figure of merit. Proc Natl Acad Sci U S A 2016;113:12929-33.  DOI  PubMed  PMC
               39.       Yamada N, Ino R, Ninomiya Y. Truly transparent p-type γ-CuI thin films with high hole mobility. Chem Mater 2016;28:4971-81.
                    DOI
               40.       Lee HA, Yatsu K, Kim TI, Kwon HI, Park IJ. Synthesis of vacancy-controlled copper iodide semiconductor for high-performance p-
                    type thin-film transistors. ACS Appl Mater Interfaces 2022;14:56416-26.  DOI  PubMed
               41.       Bädeker K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der
                    Physik 1907;327:749-66.  DOI
               42.       Liu A, Zhu H, Park WT, et al. Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin-
                    film transistors and complementary electronics. Adv Mater 2018;30:e1802379.  DOI  PubMed
               43.       Das S, Choi J, Alford T. P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol
                    Energy Mater Sol Cells 2015;133:255-9.  DOI
               44.       Choi CH, Gorecki JY, Fang Z, et al. Low-temperature, inkjet printed p-type copper(I) iodide thin film transistors. J Mater Chem C
                    2016;4:10309-14.  DOI
               45.       Lee K, Gyu Oh J, Kim D, et al. Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating
                    complementary inverters: Improving stability with passivation layers. Appl Surf Sci 2023;608:155081.  DOI
               46.       Mirza AS, Pols M, Soltanpoor W, Tao S, Brocks G, Morales-masis M. The role of sulfur in sulfur-doped copper(I) iodide p-type
                    transparent conductors. Matter 2023;6:4306-20.  DOI
               47.       Markwitz M, Murmu PP, Back SY, Mori T, Ruck BJ, Kennedy J. Effect of grain boundary scattering on carrier mobility and
                    thermoelectric properties of tellurium incorporated copper iodide thin films. Surf Interfaces 2023;41:103190.  DOI
               48.       Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FC. Recent advances on pulsed laser deposition of large-scale thin films. Small
                    Methods 2024;8:e2301282.  DOI  PubMed
               49.       Geng F, Wu YN, Splith D, et al. Amorphous transparent Cu(S,I) thin films with very high hole conductivity. J Phys Chem Lett
                    2023;14:6163-9.  DOI  PubMed
               50.      Keen DA, Hull S. The high-temperature structural behaviour of copper(I) iodide. J Phys Condens Matter 1995;7:5793-804.  DOI
               51.       Kaindl G, Nowik I, Frank KH. High-pressure phases of CuI studied by  129 I-Mössbauer spectroscopy. Hyperfine Interact 1992;72:251-
                    7.  DOI
               52.       Yu H, Cai X, Yang Y, Wang Z, Wei S. Band gap anomaly in cuprous halides. Comp Mater Sci 2022;203:111157.  DOI
               53.       Tanaka I, Kim D, Nakayama M, Nishimura H. Photoluminescence from heavy-hole and light-hole excitons split by thermal strain in
                    CuI thin films. J Lumin 2000;87-9:257-9.  DOI
               54.       Wang J, Li J, Li SS. Native p-type transparent conductive CuI via intrinsic defects. J Appl Phys 2011;110:054907.  DOI
               55.       Jaschik S, Marques MRG, Seifert M, Rödl C, Botti S, Marques MAL. Stable ordered phases of cuprous iodide with complexes of
                    copper vacancies. Chem Mater 2019;31:7877-82.  DOI
               56.       Darnige P, Thimont Y, Presmanes L, Barnabé A. Insights into stability, transport, and thermoelectric properties of transparent p-type
                    copper iodide thin films. J Mater Chem C 2023;11:630-44.  DOI
               57.       Yamada N, Tanida Y, Murata H, Kondo T, Yoshida S. Wide-range-tunable p-type conductivity of transparent CuI Br  alloy. Adv
                                                                                               1-x  x
                    Funct Mater 2020;30:2003096.  DOI
               58.       Schein F, von Wenckstern H, Grundmann M. Transparent p-CuI/n-ZnO heterojunction diodes. Appl Phys Lett 2013;102:092109.
                    DOI
               59.       Yang C, Kneiß M, Schein FL, Lorenz M, Grundmann M. Room-temperature domain-epitaxy of copper iodide thin films for
                                                                       9
                    transparent CuI/ZnO heterojunctions with high rectification ratios larger than 10 . Sci Rep 2016;6:21937.  DOI  PubMed  PMC
               60.       Zuo C, Cai S, Li Z, Fang X. A transparent, self-powered photodetector based on p-CuI/n-TiO heterojunction film with high on-off
                                                                                 2
                    ratio. Nanotechnology 2021;33:105202.  DOI  PubMed
               61.       Cha JH, Jung DY. Air-stable transparent silver iodide-copper iodide heterojunction diode. ACS Appl Mater Interfaces 2017;9:43807-
                    13.  DOI  PubMed
               62.       Kim T, Son C, Lee J, et al. Interfacial ZnS passivation for improvement of transparent ZnO/CuI diode characteristics. Appl Surf Sci
                    2021;536:147645.  DOI
               63.       Lee JH, Lee WJ, Kim TH, Lee T, Hong S, Kim KH. Transparent p-CuI/n-BaSnO  heterojunctions with a high rectification ratio. J
                                                                         3-δ
                    Phys Condens Matter 2017;29:384004.  DOI
               64.       Yamada N, Kondo Y, Ino R. Low-temperature fabrication and performance of polycrystalline CuI films as transparent p-type
                    semiconductors. Phys Status Solidi A 2019;216:1700782.  DOI
               65.       Lee JH, Lee BH, Kang J, et al. Characteristics and electronic band alignment of a transparent p-CuI/n-SiZnSnO heterojunction diode
                    with a high rectification ratio. Nanomaterials 2021;11:1237.  DOI  PubMed  PMC
               66.       Grundmann M, Schein F, Lorenz M, Böntgen T, Lenzner J, von Wenckstern H. Cuprous iodide - a p-type transparent semiconductor:
                    history and novel applications. Phys Status Solidi A 2013;210:1671-703.  DOI
               67.       Xiong C, Yao R. Low temperature preparation p-CuI/n-ZnO wide gap heterojunction diode. Optik 2015;126:1951-4.  DOI
               68.       Ayhan ME, Shinde M, Todankar B, et al. Ultraviolet radiation-induced photovoltaic action in γ-CuI/β-Ga O  heterojunction. Mater
                                                                                           3
                                                                                         2
   99   100   101   102   103   104   105   106   107   108   109