Page 104 - Read Online
P. 104
Page 28 of 31 Kim et al. Soft Sci 2024;4:33 https://dx.doi.org/10.20517/ss.2024.28
37. Storm P, Bar MS, Benndorf G, et al. High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser
deposition. APL Mater 2020;8:091115. DOI
38. Yang C, Kneiβ M, Lorenz M, Grundmann M. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent
conductor with a boosted figure of merit. Proc Natl Acad Sci U S A 2016;113:12929-33. DOI PubMed PMC
39. Yamada N, Ino R, Ninomiya Y. Truly transparent p-type γ-CuI thin films with high hole mobility. Chem Mater 2016;28:4971-81.
DOI
40. Lee HA, Yatsu K, Kim TI, Kwon HI, Park IJ. Synthesis of vacancy-controlled copper iodide semiconductor for high-performance p-
type thin-film transistors. ACS Appl Mater Interfaces 2022;14:56416-26. DOI PubMed
41. Bädeker K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der
Physik 1907;327:749-66. DOI
42. Liu A, Zhu H, Park WT, et al. Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin-
film transistors and complementary electronics. Adv Mater 2018;30:e1802379. DOI PubMed
43. Das S, Choi J, Alford T. P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol
Energy Mater Sol Cells 2015;133:255-9. DOI
44. Choi CH, Gorecki JY, Fang Z, et al. Low-temperature, inkjet printed p-type copper(I) iodide thin film transistors. J Mater Chem C
2016;4:10309-14. DOI
45. Lee K, Gyu Oh J, Kim D, et al. Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating
complementary inverters: Improving stability with passivation layers. Appl Surf Sci 2023;608:155081. DOI
46. Mirza AS, Pols M, Soltanpoor W, Tao S, Brocks G, Morales-masis M. The role of sulfur in sulfur-doped copper(I) iodide p-type
transparent conductors. Matter 2023;6:4306-20. DOI
47. Markwitz M, Murmu PP, Back SY, Mori T, Ruck BJ, Kennedy J. Effect of grain boundary scattering on carrier mobility and
thermoelectric properties of tellurium incorporated copper iodide thin films. Surf Interfaces 2023;41:103190. DOI
48. Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FC. Recent advances on pulsed laser deposition of large-scale thin films. Small
Methods 2024;8:e2301282. DOI PubMed
49. Geng F, Wu YN, Splith D, et al. Amorphous transparent Cu(S,I) thin films with very high hole conductivity. J Phys Chem Lett
2023;14:6163-9. DOI PubMed
50. Keen DA, Hull S. The high-temperature structural behaviour of copper(I) iodide. J Phys Condens Matter 1995;7:5793-804. DOI
51. Kaindl G, Nowik I, Frank KH. High-pressure phases of CuI studied by 129 I-Mössbauer spectroscopy. Hyperfine Interact 1992;72:251-
7. DOI
52. Yu H, Cai X, Yang Y, Wang Z, Wei S. Band gap anomaly in cuprous halides. Comp Mater Sci 2022;203:111157. DOI
53. Tanaka I, Kim D, Nakayama M, Nishimura H. Photoluminescence from heavy-hole and light-hole excitons split by thermal strain in
CuI thin films. J Lumin 2000;87-9:257-9. DOI
54. Wang J, Li J, Li SS. Native p-type transparent conductive CuI via intrinsic defects. J Appl Phys 2011;110:054907. DOI
55. Jaschik S, Marques MRG, Seifert M, Rödl C, Botti S, Marques MAL. Stable ordered phases of cuprous iodide with complexes of
copper vacancies. Chem Mater 2019;31:7877-82. DOI
56. Darnige P, Thimont Y, Presmanes L, Barnabé A. Insights into stability, transport, and thermoelectric properties of transparent p-type
copper iodide thin films. J Mater Chem C 2023;11:630-44. DOI
57. Yamada N, Tanida Y, Murata H, Kondo T, Yoshida S. Wide-range-tunable p-type conductivity of transparent CuI Br alloy. Adv
1-x x
Funct Mater 2020;30:2003096. DOI
58. Schein F, von Wenckstern H, Grundmann M. Transparent p-CuI/n-ZnO heterojunction diodes. Appl Phys Lett 2013;102:092109.
DOI
59. Yang C, Kneiß M, Schein FL, Lorenz M, Grundmann M. Room-temperature domain-epitaxy of copper iodide thin films for
9
transparent CuI/ZnO heterojunctions with high rectification ratios larger than 10 . Sci Rep 2016;6:21937. DOI PubMed PMC
60. Zuo C, Cai S, Li Z, Fang X. A transparent, self-powered photodetector based on p-CuI/n-TiO heterojunction film with high on-off
2
ratio. Nanotechnology 2021;33:105202. DOI PubMed
61. Cha JH, Jung DY. Air-stable transparent silver iodide-copper iodide heterojunction diode. ACS Appl Mater Interfaces 2017;9:43807-
13. DOI PubMed
62. Kim T, Son C, Lee J, et al. Interfacial ZnS passivation for improvement of transparent ZnO/CuI diode characteristics. Appl Surf Sci
2021;536:147645. DOI
63. Lee JH, Lee WJ, Kim TH, Lee T, Hong S, Kim KH. Transparent p-CuI/n-BaSnO heterojunctions with a high rectification ratio. J
3-δ
Phys Condens Matter 2017;29:384004. DOI
64. Yamada N, Kondo Y, Ino R. Low-temperature fabrication and performance of polycrystalline CuI films as transparent p-type
semiconductors. Phys Status Solidi A 2019;216:1700782. DOI
65. Lee JH, Lee BH, Kang J, et al. Characteristics and electronic band alignment of a transparent p-CuI/n-SiZnSnO heterojunction diode
with a high rectification ratio. Nanomaterials 2021;11:1237. DOI PubMed PMC
66. Grundmann M, Schein F, Lorenz M, Böntgen T, Lenzner J, von Wenckstern H. Cuprous iodide - a p-type transparent semiconductor:
history and novel applications. Phys Status Solidi A 2013;210:1671-703. DOI
67. Xiong C, Yao R. Low temperature preparation p-CuI/n-ZnO wide gap heterojunction diode. Optik 2015;126:1951-4. DOI
68. Ayhan ME, Shinde M, Todankar B, et al. Ultraviolet radiation-induced photovoltaic action in γ-CuI/β-Ga O heterojunction. Mater
3
2

