Page 105 - Read Online
P. 105
Kim et al. Soft Sci 2024;4:33 https://dx.doi.org/10.20517/ss.2024.28 Page 29 of 31
Lett 2020;262:127074. DOI
69. Weiß A, Goldmann J, Kettunen S, et al. Conversion of ALD CuO thin films into transparent conductive p-type CuI thin films. Adv
Mater Inter 2023;10:2201860. DOI
70. Yang Z, Li M, Wang W, Gong J, Sun H, Sun H. Fabrication of transparent p-CuI/n-ZnO heterojunction with excellent ideality factor.
J Phys D Appl Phys 2024;57:145301. DOI
71. Fortunato E, Martins R. Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 2011;5:336-9. DOI
72. Fortunato E, Barros R, Barquinha P, et al. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering
followed by low temperature annealing. Appl Phys Lett 2010;97:052105. DOI
73. Ogo Y, Hiramatsu H, Nomura K, et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett
2008;93:032113. DOI
74. Ogo Y, Hiramatsu H, Nomura K, et al. Tin monoxide as an s-orbital-based p-type oxide semiconductor: electronic structures and TFT
application. Phys Status Solidi 2009;206:2187-91. DOI
75. Zhang KH, Xi K, Blamire MG, Egdell RG. P-type transparent conducting oxides. J Phys Condens Matter 2016;28:383002. DOI
PubMed
76. Klauk H, Gundlach DJ, Nichols JA, Jackson TN. Pentacene organic thin-film transistors for circuit and display applications. IEEE T
Electron Dev 1999;46:1258-63. DOI
77. Park JH, Kang CH, Kim YJ, Lee YS, Choi JS. Characteristics of pentacene-based thin-film transistors. Mater Sci Eng C 2004;24:27-
9. DOI
78. Zhou L, Park S, Bai B, et al. Pentacene TFT driven AM OLED displays. IEEE Electron Device Lett 2005;26:640-2. DOI
79. Reig M, Puigdollers J, Velasco D. Molecular order of air-stable p-type organic thin-film transistors by tuning the extension of the π-
conjugated core: the cases of indolo[3,2-b]carbazole and triindole semiconductors. J Mater Chem C 2015;3:506-13. DOI
80. Liu A, Zhu H, Park WT, et al. High-performance p-channel transistors with transparent Zn doped-CuI. Nat Commun 2020;11:4309.
DOI PubMed PMC
81. Li S, Liebe B, Son C, et al. Inkjet-printed p-type CuBr I : wearable thin-film transistors. Mater Adv 2022;3:7538-45. DOI
x 1-x
82. Rajani K, Daniels S, Rahman M, Cowley A, Mcnally P. Deposition of earth-abundant p-type CuBr films with high hole conductivity
and realization of p-CuBr/n-Si heterojunction solar cell. Mater Lett 2013;111:63-6. DOI
83. Wei W, Gao M, Wang Z, et al. High-performance p-channel CuIBr thin-film transistor synthesized from solution in the atmosphere.
Appl Phys Lett 2023;122:193301. DOI
84. Wu H, Liang L, Wang X, et al. High-mobility flexible/transparent p-type copper iodide thin-film transistors and complementary
inverters. Appl Surf Sci 2023;612:155795. DOI
85. Lee H, Kim TI, Kwon H, Park I. Effects of solution processable CuI thin films with Al O -based sandwiched architecture for high-
2 3
performance p-type transistor applications. J Mater Chem C 2024;12:6457-68. DOI
86. Dai M, Xu W. Polarization mechanism and quasi-electric-double-layer modeling for indium-tin-oxide electric-double-layer thin-film-
transistors. Appl Phys Lett 2012;100:113506. DOI
87. Cho J, Lee J, He Y, Kim B, Lodge T, Frisbie C. High-capacitance ion gel gate dielectrics with faster polarization response times for
organic thin film transistors. Adv Mater 2008;20:686-90. DOI
88. Liang X, Luo Y, Pei Y, Wang M, Liu C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat Electron
2022;5:859-69. DOI
89. Annadi A, Zhang N, Lim DBK, Gong H. Hole transport modulations in low dimensional γ-CuI films: implication for high figure of
merit and thin film transistors. ACS Appl Electron Mater 2019;1:1029-37. DOI
90. Liu A, Zhu H, Shim KI, et al. Key roles of trace oxygen treatment for high-performance Zn-doped CuI p-channel transistors. Adv
Elect Mater 2021;7:2000933. DOI
91. Wang M, Li H, Xin Q, et al. Performance enhancement of solution-processed p-type CuI TFTs by self-assembled monolayer
treatment. Appl Surf Sci 2023;638:158075. DOI
92. Huang Y, Tan J, Gao G, et al. Transparent p-type CuI film based self-powered ultraviolet photodetectors with ultrahigh speed,
responsivity and detectivity. J Mater Chem C 2022;10:13040-6. DOI
93. Tsay CY, Chen YC, Tsai HM, Sittimart P, Yoshitake T. The role of Zn substitution in improving the electrical properties of CuI thin
films and optoelectronic performance of CuI MSM photodetectors. Materials 2022;15:8145. DOI PubMed PMC
94. Yamada N, Kondo Y, Cao X, Nakano Y. Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector
based on CuI/In-Ga-Zn-O heterojunction. Appl Mater Today 2019;15:153-62. DOI
4+
95. Li S, Zhang Y, Yang W, Fang X. Solution-processed transparent Sn -doped CuI hybrid photodetectors with enhanced performances.
Adv Mater Interfaces 2019;6:1900669. DOI
96. Cao F, Jin L, Wu Y, Ji X. High-performance, self-powered UV photodetector based on Au nanoparticles decorated ZnO/CuI
heterostructure. J Alloys Compd 2021;859:158383. DOI
97. Cao F, Liu Y, Liu M, et al. Wide bandgap semiconductors for ultraviolet photodetectors: approaches, applications, and prospects.
Research 2024;7:0385. DOI PubMed PMC
98. Burm J, Litvin KI, Woodard DW, et al. High-frequency, high-efficiency MSM photodetectors. IEEE J Quantum Electron
1995;31:1504-9. DOI
99. Shyam A, Amal Kaitheri N, Raju R, Swaminathan R. Self-powered UV photodetectors based on heterojunctions composed of ZnO

