Page 103 - Read Online
P. 103

Kim et al. Soft Sci 2024;4:33  https://dx.doi.org/10.20517/ss.2024.28           Page 27 of 31

               7.       Shi J, Zhang J, Yang L, Qu M, Qi DC, Zhang KHL. Wide bandgap oxide semiconductors: from materials physics to optoelectronic
                    devices. Adv Mater 2021;33:e2006230.  DOI  PubMed
               8.       Kawazoe H, Yanagi H, Ueda K, Hosono H. Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions.
                    MRS Bull 2000;25:28-36.  DOI
               9.       Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H. Chemical design and thin film preparation of p-type conductive
                    transparent oxides. J Electroceram 2000;4:407-14.  DOI
               10.       Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of
                    CuAlO . Nature 1997;389:939-42.  DOI
                         2
               11.       Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN. Recent developments in p-type oxide semiconductor materials and devices.
                    Adv Mater 2016;28:3831-92.  DOI  PubMed
               12.       Liu A, Zhu H, Kim MG, Kim J, Noh YY. Engineering copper iodide (CuI) for multifunctional p-type transparent semiconductors and
                    conductors. Adv Sci 2021;8:2100546.  DOI  PubMed  PMC
               13.       Zhang Z, Guo Y, Robertson J. Electronic structure of amorphous copper iodide: a p-type transparent semiconductor. Phys Rev Mater
                    2020;4:054603.  DOI
               14.       Willis J, Claes R, Zhou Q, et al. Limits to hole mobility and doping in copper iodide. Chem Mater 2023;35:8995-9006.  DOI
                    PubMed  PMC
               15.       Grosskreutz JC. Mechanical properties of metal oxide films. J Electrochem Soc 1969;116:1232-7.  DOI
               16.       Kim MG, Kanatzidis MG, Facchetti A, Marks TJ. Low-temperature fabrication of high-performance metal oxide thin-film electronics
                    via combustion processing. Nat Mater 2011;10:382-8.  DOI  PubMed
               17.       Yu X, Zeng L, Zhou N, et al. Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel
                    layer blends. Adv Mater 2015;27:2390-9.  DOI  PubMed
               18.       Lee  S,  Kang  D,  Oh  I.  Multilayered  graphene-carbon  nanotube-iron  oxide  three-dimensional  heterostructure  for  flexible
                    electromagnetic interference shielding film. Carbon 2017;111:248-57.  DOI
               19.       Yun J, Wang W, Bae TS, et al. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide
                    multilayer electrodes based on silver oxide. ACS Appl Mater Interfaces 2013;5:9933-41.  DOI  PubMed
               20.       Le MN, Baeg K, Kim K, et al. Versatile solution-processed organic–inorganic hybrid superlattices for ultraflexible and transparent
                    high-performance optoelectronic devices. Adv Funct Mater 2021;31:2103285.  DOI
               21.       Vidor FF, Meyers T, Wirth GI, Hilleringmann U. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating
                    technique. Microelectron Eng 2016;159:155-8.  DOI
               22.       Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible
                    biosensors. Adv Funct Mater 2012;22:2487-94.  DOI
               23.       Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent progress on flexible room-temperature gas sensors based on metal oxide
                    semiconductor. Nanomicro Lett 2022;14:206.  DOI  PubMed  PMC
               24.       Liu X, Miao J, Liao L, Hu W. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors
                    with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C 2014;2:1201-8.  DOI
               25.       Jeong JW, Hwang HS, Choi D, Ma BC, Jung J, Chang M. Hybrid polymer/metal oxide thin films for high performance, flexible
                    transistors. Micromachines 2020;11:264.  DOI  PubMed  PMC
               26.       Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun
                    2015;6:6503.  DOI  PubMed  PMC
               27.       Yang C, Souchay D, Kneiß M, et al. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper
                    iodide thin film. Nat Commun 2017;8:16076.  DOI  PubMed  PMC
               28.       Ahn K, Kim GH, Kim S, et al. Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide. Chem
                    Mater 2022;34:10517-27.  DOI
               29.       Mishra D, Mokurala K, Kumar A, Seo SG, Jo HB, Jin SH. Light-mediated multi-level flexible copper iodide resistive random access
                    memory for forming-free, ultra-low power data storage application. Adv Funct Mater 2023;33:2211022.  DOI
               30.       GrauŽinytė M, Botti S, Marques MAL, Goedecker S, Flores-Livas JA. Computational acceleration of prospective dopant discovery in
                    cuprous iodide. Phys Chem Chem Phys 2019;21:18839-49.  DOI  PubMed
               31.       Jung HS, Eun K, Kim YT, Lee EK, Choa S. Experimental and numerical investigation of flexibility of ITO electrode for application
                    in flexible electronic devices. Microsyst Technol 2017;23:1961-70.  DOI
               32.       Chen D, Wang Y, Lin Z, et al. Growth strategy and physical properties of the high mobility p-type CuI crystal. Cryst Growth Des
                    2010;10:2057-60.  DOI
               33.       Sun W, Peng H, Li Y, et al. Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar
                    cells. J Phys Chem C 2014;118:16806-12.  DOI
               34.       Son M, Kim GH, Song O, et al. Dopant control of solution-processed CuI:S for highly conductive p-type transparent electrode. Adv
                    Sci 2024;11:e2308188.  DOI  PubMed  PMC
               35.       Chen W, Deng L, Dai S, et al. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for
                    efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 2015;3:19353-9.  DOI
               36.       Kaushik DK, Selvaraj M, Ramu S, Subrahmanyam A. Thermal evaporated copper iodide (CuI) thin films: a note on the disorder
                    evaluated through the temperature dependent electrical properties. Sol Energy Mater Sol Cells 2017;165:52-8.  DOI
   98   99   100   101   102   103   104   105   106   107   108