Page 103 - Read Online
P. 103
Kim et al. Soft Sci 2024;4:33 https://dx.doi.org/10.20517/ss.2024.28 Page 27 of 31
7. Shi J, Zhang J, Yang L, Qu M, Qi DC, Zhang KHL. Wide bandgap oxide semiconductors: from materials physics to optoelectronic
devices. Adv Mater 2021;33:e2006230. DOI PubMed
8. Kawazoe H, Yanagi H, Ueda K, Hosono H. Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions.
MRS Bull 2000;25:28-36. DOI
9. Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H. Chemical design and thin film preparation of p-type conductive
transparent oxides. J Electroceram 2000;4:407-14. DOI
10. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of
CuAlO . Nature 1997;389:939-42. DOI
2
11. Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN. Recent developments in p-type oxide semiconductor materials and devices.
Adv Mater 2016;28:3831-92. DOI PubMed
12. Liu A, Zhu H, Kim MG, Kim J, Noh YY. Engineering copper iodide (CuI) for multifunctional p-type transparent semiconductors and
conductors. Adv Sci 2021;8:2100546. DOI PubMed PMC
13. Zhang Z, Guo Y, Robertson J. Electronic structure of amorphous copper iodide: a p-type transparent semiconductor. Phys Rev Mater
2020;4:054603. DOI
14. Willis J, Claes R, Zhou Q, et al. Limits to hole mobility and doping in copper iodide. Chem Mater 2023;35:8995-9006. DOI
PubMed PMC
15. Grosskreutz JC. Mechanical properties of metal oxide films. J Electrochem Soc 1969;116:1232-7. DOI
16. Kim MG, Kanatzidis MG, Facchetti A, Marks TJ. Low-temperature fabrication of high-performance metal oxide thin-film electronics
via combustion processing. Nat Mater 2011;10:382-8. DOI PubMed
17. Yu X, Zeng L, Zhou N, et al. Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel
layer blends. Adv Mater 2015;27:2390-9. DOI PubMed
18. Lee S, Kang D, Oh I. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible
electromagnetic interference shielding film. Carbon 2017;111:248-57. DOI
19. Yun J, Wang W, Bae TS, et al. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide
multilayer electrodes based on silver oxide. ACS Appl Mater Interfaces 2013;5:9933-41. DOI PubMed
20. Le MN, Baeg K, Kim K, et al. Versatile solution-processed organic–inorganic hybrid superlattices for ultraflexible and transparent
high-performance optoelectronic devices. Adv Funct Mater 2021;31:2103285. DOI
21. Vidor FF, Meyers T, Wirth GI, Hilleringmann U. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating
technique. Microelectron Eng 2016;159:155-8. DOI
22. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible
biosensors. Adv Funct Mater 2012;22:2487-94. DOI
23. Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent progress on flexible room-temperature gas sensors based on metal oxide
semiconductor. Nanomicro Lett 2022;14:206. DOI PubMed PMC
24. Liu X, Miao J, Liao L, Hu W. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors
with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C 2014;2:1201-8. DOI
25. Jeong JW, Hwang HS, Choi D, Ma BC, Jung J, Chang M. Hybrid polymer/metal oxide thin films for high performance, flexible
transistors. Micromachines 2020;11:264. DOI PubMed PMC
26. Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun
2015;6:6503. DOI PubMed PMC
27. Yang C, Souchay D, Kneiß M, et al. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper
iodide thin film. Nat Commun 2017;8:16076. DOI PubMed PMC
28. Ahn K, Kim GH, Kim S, et al. Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide. Chem
Mater 2022;34:10517-27. DOI
29. Mishra D, Mokurala K, Kumar A, Seo SG, Jo HB, Jin SH. Light-mediated multi-level flexible copper iodide resistive random access
memory for forming-free, ultra-low power data storage application. Adv Funct Mater 2023;33:2211022. DOI
30. GrauŽinytė M, Botti S, Marques MAL, Goedecker S, Flores-Livas JA. Computational acceleration of prospective dopant discovery in
cuprous iodide. Phys Chem Chem Phys 2019;21:18839-49. DOI PubMed
31. Jung HS, Eun K, Kim YT, Lee EK, Choa S. Experimental and numerical investigation of flexibility of ITO electrode for application
in flexible electronic devices. Microsyst Technol 2017;23:1961-70. DOI
32. Chen D, Wang Y, Lin Z, et al. Growth strategy and physical properties of the high mobility p-type CuI crystal. Cryst Growth Des
2010;10:2057-60. DOI
33. Sun W, Peng H, Li Y, et al. Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar
cells. J Phys Chem C 2014;118:16806-12. DOI
34. Son M, Kim GH, Song O, et al. Dopant control of solution-processed CuI:S for highly conductive p-type transparent electrode. Adv
Sci 2024;11:e2308188. DOI PubMed PMC
35. Chen W, Deng L, Dai S, et al. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for
efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 2015;3:19353-9. DOI
36. Kaushik DK, Selvaraj M, Ramu S, Subrahmanyam A. Thermal evaporated copper iodide (CuI) thin films: a note on the disorder
evaluated through the temperature dependent electrical properties. Sol Energy Mater Sol Cells 2017;165:52-8. DOI

