Page 106 - Read Online
P. 106

Page 30 of 31                            Kim et al. Soft Sci 2024;4:33  https://dx.doi.org/10.20517/ss.2024.28

                    nanorods coated with thin films of ZnS and CuI. ACS Appl Nano Mater 2023;6:8529-39.  DOI
               100.      Madusanka H, Herath H, Fernando C. High photoresponse performance of self-powered n-Cu O/p-CuI heterojunction based UV-
                                                                                  2
                    visible photodetector. Sensor Actuat A Phys 2019;296:61-9.  DOI
               101.      Zhou Z, Zhao F, Wang C, et al. Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high
                    quality CuI thin film. Opt Express 2022;30:29749-59.  DOI
               102.      Mahyavanshi RD, Desai P, Ranade A, Tanemura M, Kalita G. Observing charge transfer interaction in CuI and MoS  heterojunction
                                                                                                2
                    for photoresponsive device application. ACS Appl Electron Mater 2019;1:302-10.  DOI
               103.      Zhang Y, Li S, Yang W, Joshi MK, Fang X. Millimeter-sized single-crystal CsPbrB /CuI heterojunction for high-performance self-
                                                                           3
                    powered photodetector. J Phys Chem Lett 2019;10:2400-7.  DOI  PubMed
               104.      Li Z, Zhang L, Wang J, et al. Hydrothermal growth and their optoelectronic device application of CuI nanostructure. Mater Res
                    Express 2019;6:045048.  DOI
               105.      Niu S, Zhao F, Hang Y, et al. Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO
                    nanowires. Opt Lett 2020;45:559-62.  DOI
               106.      Krishnaiah M, Kumar A, Mishra D, Kushwaha AK, Jin SH, Park JT. Solution-processed CuI films towards flexible visible-
                    photodetectors: role of annealing temperature on Cu/I ratio and photodetective properties. J Alloy Compd 2021;887:161326.  DOI
               107.      Krishnaiah M, Kumar A, Kushwaha AK, Song J, Jin SH. Thickness dependent photodetection properties of solution-processed CuI
                    films: towards cost-effective flexible visible photodetectors. Mater Lett 2021;305:130815.  DOI
               108.      Cao N, Zhang L, Li X, et al. Self-powered deep ultraviolet photodetector based on p-CuI/n-ZnGa O  heterojunction with high
                                                                                      2  4
                    sensitivity and fast speed. Opt Express 2024;32:11573-82.  DOI  PubMed
               109.      Storm P, Bar MS, Selle S, von Wenckstern H, Grundmann M, Lorenz M. p-Type doping and alloying of CuI thin films with
                    selenium. Phys Status Solidi R 2021;15:2100214.  DOI
               110.      Matsuzaki K, Tsunoda N, Kumagai Y, et al. Hole-doping to a Cu(I)-based semiconductor with an isovalent cation: utilizing a
                    complex defect as a shallow acceptor. J Am Chem Soc 2022;144:16572-8.  DOI
               111.      Raj V, Lu T, Lockrey M, et al. Introduction of TiO  in CuI for its improved performance as a p-type transparent conductor. ACS Appl
                                                     2
                    Mater Interfaces 2019;11:24254-63.  DOI  PubMed
               112.      Xue R, Gao G, Yang L, Xu L, Zhang Y, Zhu J. High-performance p-type transparent conducting CuI-Cu O thin films with enhanced
                                                                                        2
                    hole mobility, surface, and stability. J Mater Chem C 2023;11:13681-90.  DOI
               113.      Inagaki S, Nakamura M, Aizawa N, et al. Molecular beam epitaxy of high-quality CuI thin films on a low temperature grown buffer
                    layer. Appl Phys Lett 2020;116:192105.  DOI
               114.      Crovetto A, Hempel H, Rusu M, et al. Water adsorption enhances electrical conductivity in transparent p-type CuI. ACS Appl Mater
                    Interfaces 2020;12:48741-7.  DOI  PubMed
               115.      Lv Y, Xu Z, Ye L, Zhang Z, Su G, Zhuang X. Large γ-CuI semiconductor single crystal growth by a temperature reduction method
                    from an NH I aqueous solution. CrystEngComm 2015;17:862-7.  DOI
                            4
               116.      Peng W, Li L, Yu S, Yang P, Xu K, Luo W. High-performance flexible transparent p-CuI film by optimized solid iodization. Vacuum
                    2021;183:109862.  DOI
               117.      Lee HJ, Park M, Lee S, Kim B, Hong K. Solution-processed copper iodide film as a p-type electrical conductor and their applications.
                    ACS Appl Electron Mater 2022;4:1232-7.  DOI
               118.      Cota-leal M, Cabrera-german D, Sotelo-lerma M, Martínez-gil M, García-valenzuela J. Highly-transparent and conductive CuI films
                    obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS  and subsequent iodination. Mat
                                                                                     2
                    Sci Semicon Proc 2019;95:59-67.  DOI
               119.      Stralka T, Bar M, Schöppach F, et al. Grain and grain boundary conduction channels in copper iodide thin films. Phys Status Solidi A
                    2023;220:2200883.  DOI
               120.      Li ZH, He JX, Lv XH, et al. Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films. Nat Commun
                    2022;13:6346.  DOI  PubMed  PMC
               121.      Zou S, Shen Y, Xie F, Chen J, Li Y, Tang J. Recent advances in organic light-emitting diodes: toward smart lighting and displays.
                    Mater Chem Front 2020;4:788-820.  DOI
               122.      Xu R, Li Y, Tang J. Recent advances in flexible organic light-emitting diodes. J Mater Chem C 2016;4:9116-42.  DOI
               123.      Shahnawaz S, Sudheendran Swayamprabha S, Nagar MR, et al. Hole-transporting materials for organic light-emitting diodes: an
                    overview. J Mater Chem C 2019;7:7144-58.  DOI
               124.      Stakhira P, Cherpak V, Volynyuk D, et al. Characteristics of organic light emitting diodes with copper iodide as injection layer. Thin
                    Solid Films 2010;518:7016-8.  DOI
               125.      Shan M, Jiang H, Guan Y, et al. Enhanced hole injection in organic light-emitting diodes utilizing a copper iodide-doped hole
                    injection layer. RSC Adv 2017;7:13584-9.  DOI
               126.      Lee J, Leem D, Kim J. High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer.
                    Organic Electronics 2008;9:805-8.  DOI
               127.      Hotra Z, Stakhira P, Cherpak V, et al. Effect of thickness of CuI hole injection layer on properties of organic light emitting diodes.
                    Photonics Lett Pol 2012;4:35-7. Available from: https://photonics.pl/PLP/index.php/letters/article/view/4-13. [Last accessed on 13
                    Sep 2024]
               128.      Choudhury A, Nagar MR, The L, et al. Nanocrystalline copper iodide enabling high-efficiency organic LEDs. Org Electron
                    2022;111:106668.  DOI
   101   102   103   104   105   106   107   108   109   110   111