Page 106 - Read Online
P. 106
Page 30 of 31 Kim et al. Soft Sci 2024;4:33 https://dx.doi.org/10.20517/ss.2024.28
nanorods coated with thin films of ZnS and CuI. ACS Appl Nano Mater 2023;6:8529-39. DOI
100. Madusanka H, Herath H, Fernando C. High photoresponse performance of self-powered n-Cu O/p-CuI heterojunction based UV-
2
visible photodetector. Sensor Actuat A Phys 2019;296:61-9. DOI
101. Zhou Z, Zhao F, Wang C, et al. Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high
quality CuI thin film. Opt Express 2022;30:29749-59. DOI
102. Mahyavanshi RD, Desai P, Ranade A, Tanemura M, Kalita G. Observing charge transfer interaction in CuI and MoS heterojunction
2
for photoresponsive device application. ACS Appl Electron Mater 2019;1:302-10. DOI
103. Zhang Y, Li S, Yang W, Joshi MK, Fang X. Millimeter-sized single-crystal CsPbrB /CuI heterojunction for high-performance self-
3
powered photodetector. J Phys Chem Lett 2019;10:2400-7. DOI PubMed
104. Li Z, Zhang L, Wang J, et al. Hydrothermal growth and their optoelectronic device application of CuI nanostructure. Mater Res
Express 2019;6:045048. DOI
105. Niu S, Zhao F, Hang Y, et al. Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO
nanowires. Opt Lett 2020;45:559-62. DOI
106. Krishnaiah M, Kumar A, Mishra D, Kushwaha AK, Jin SH, Park JT. Solution-processed CuI films towards flexible visible-
photodetectors: role of annealing temperature on Cu/I ratio and photodetective properties. J Alloy Compd 2021;887:161326. DOI
107. Krishnaiah M, Kumar A, Kushwaha AK, Song J, Jin SH. Thickness dependent photodetection properties of solution-processed CuI
films: towards cost-effective flexible visible photodetectors. Mater Lett 2021;305:130815. DOI
108. Cao N, Zhang L, Li X, et al. Self-powered deep ultraviolet photodetector based on p-CuI/n-ZnGa O heterojunction with high
2 4
sensitivity and fast speed. Opt Express 2024;32:11573-82. DOI PubMed
109. Storm P, Bar MS, Selle S, von Wenckstern H, Grundmann M, Lorenz M. p-Type doping and alloying of CuI thin films with
selenium. Phys Status Solidi R 2021;15:2100214. DOI
110. Matsuzaki K, Tsunoda N, Kumagai Y, et al. Hole-doping to a Cu(I)-based semiconductor with an isovalent cation: utilizing a
complex defect as a shallow acceptor. J Am Chem Soc 2022;144:16572-8. DOI
111. Raj V, Lu T, Lockrey M, et al. Introduction of TiO in CuI for its improved performance as a p-type transparent conductor. ACS Appl
2
Mater Interfaces 2019;11:24254-63. DOI PubMed
112. Xue R, Gao G, Yang L, Xu L, Zhang Y, Zhu J. High-performance p-type transparent conducting CuI-Cu O thin films with enhanced
2
hole mobility, surface, and stability. J Mater Chem C 2023;11:13681-90. DOI
113. Inagaki S, Nakamura M, Aizawa N, et al. Molecular beam epitaxy of high-quality CuI thin films on a low temperature grown buffer
layer. Appl Phys Lett 2020;116:192105. DOI
114. Crovetto A, Hempel H, Rusu M, et al. Water adsorption enhances electrical conductivity in transparent p-type CuI. ACS Appl Mater
Interfaces 2020;12:48741-7. DOI PubMed
115. Lv Y, Xu Z, Ye L, Zhang Z, Su G, Zhuang X. Large γ-CuI semiconductor single crystal growth by a temperature reduction method
from an NH I aqueous solution. CrystEngComm 2015;17:862-7. DOI
4
116. Peng W, Li L, Yu S, Yang P, Xu K, Luo W. High-performance flexible transparent p-CuI film by optimized solid iodization. Vacuum
2021;183:109862. DOI
117. Lee HJ, Park M, Lee S, Kim B, Hong K. Solution-processed copper iodide film as a p-type electrical conductor and their applications.
ACS Appl Electron Mater 2022;4:1232-7. DOI
118. Cota-leal M, Cabrera-german D, Sotelo-lerma M, Martínez-gil M, García-valenzuela J. Highly-transparent and conductive CuI films
obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS and subsequent iodination. Mat
2
Sci Semicon Proc 2019;95:59-67. DOI
119. Stralka T, Bar M, Schöppach F, et al. Grain and grain boundary conduction channels in copper iodide thin films. Phys Status Solidi A
2023;220:2200883. DOI
120. Li ZH, He JX, Lv XH, et al. Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films. Nat Commun
2022;13:6346. DOI PubMed PMC
121. Zou S, Shen Y, Xie F, Chen J, Li Y, Tang J. Recent advances in organic light-emitting diodes: toward smart lighting and displays.
Mater Chem Front 2020;4:788-820. DOI
122. Xu R, Li Y, Tang J. Recent advances in flexible organic light-emitting diodes. J Mater Chem C 2016;4:9116-42. DOI
123. Shahnawaz S, Sudheendran Swayamprabha S, Nagar MR, et al. Hole-transporting materials for organic light-emitting diodes: an
overview. J Mater Chem C 2019;7:7144-58. DOI
124. Stakhira P, Cherpak V, Volynyuk D, et al. Characteristics of organic light emitting diodes with copper iodide as injection layer. Thin
Solid Films 2010;518:7016-8. DOI
125. Shan M, Jiang H, Guan Y, et al. Enhanced hole injection in organic light-emitting diodes utilizing a copper iodide-doped hole
injection layer. RSC Adv 2017;7:13584-9. DOI
126. Lee J, Leem D, Kim J. High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer.
Organic Electronics 2008;9:805-8. DOI
127. Hotra Z, Stakhira P, Cherpak V, et al. Effect of thickness of CuI hole injection layer on properties of organic light emitting diodes.
Photonics Lett Pol 2012;4:35-7. Available from: https://photonics.pl/PLP/index.php/letters/article/view/4-13. [Last accessed on 13
Sep 2024]
128. Choudhury A, Nagar MR, The L, et al. Nanocrystalline copper iodide enabling high-efficiency organic LEDs. Org Electron
2022;111:106668. DOI

