Page 49 - Read Online
P. 49

Page 36 of 38                            Zhu et al. Soft Sci 2024;4:17  https://dx.doi.org/10.20517/ss.2024.05

               161.      Chen X, Sun P, Tian H, et al. Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable
                    dynamic covalent elastomer. J Mater Chem C 2022;10:1039-47.  DOI
               162.      Wang S, Bi S, Zhang L, Liu R, Wang H, Gu J. Skin-inspired antibacterial conductive hydrogels customized for wireless flexible
                    sensor and collaborative wound healing. J Mater Chem A 2023;11:14096-107.  DOI
               163.      Pan X, Wang Q, Guo R, et al. An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J Mater
                    Chem A 2020;8:17498-506.  DOI
               164.      Liu Z, Wang Y, Ren Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz
                    2020;7:919-27.  DOI
               165.      Wang Y, Chang Q, Zhan R, et al. Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled
                    actuators. J Mater Chem A 2019;7:24814-29.  DOI
               166.      Cui X, Chen J, Zhu Y, Jiang W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing
                    abilities based on carbon nanotubes filled conductive polymer composites. Chem Eng J 2020;382:122823.  DOI
               167.      Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
                    nanostructured conducting network. Nat Nanotechnol 2018;13:1057-65.  DOI
               168.      Li Y, Chen S, Wu M, Sun J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv Mater
                    2012;24:4578-82.  DOI
               169.      Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart eutectic gallium-indium: from properties to applications. Adv Mater
                    2023;35:e2203391.  DOI  PubMed
               170.      Chen S, Fan S, Chan H, et al. Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare
                    applications. Adv Funct Mater 2023:2309989.  DOI
               171.      Xu C, Ma B, Yuan S, Zhao C, Liu H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing
                    electronics. Adv Elect Mater 2020;6:1900721.  DOI
               172.      Guo R, Sun X, Yuan B, Wang H, Liu J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing
                    materials, degradable electronics, and thermal transfer printing. Adv Sci 2019;6:1901478.  DOI  PubMed  PMC
               173.      Yun G, Tang SY, Sun S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat Commun
                    2019;10:1300.  DOI  PubMed  PMC
               174.      Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for
                    robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.  DOI  PubMed
               175.      Wang M, Rojas OJ, Ning L, et al. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial
                    cellulose hydrogels. Carbohydr Polym 2023;301:120330.  DOI
               176.      Chu K, Song BG, Yang H, et al. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for
                    sustainable and flexible perovskite solar cells. Adv Funct Mater 2018;28:1800110.  DOI
               177.      Blaiszik BJ, Kramer SL, Grady ME, et al. Autonomic restoration of electrical conductivity. Adv Mater 2012;24:398-401.  DOI
               178.      Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic gallium-indium (EGaIn): a liquid metal alloy
                    for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097-104.  DOI
               179.      Krisnadi F, Nguyen LL, Ankit, et al. Directed assembly of liquid metal-elastomer conductors for stretchable and self-healing
                    electronics. Adv Mater 2020;32:e2001642.  DOI
               180.      Park S, Thangavel G, Parida K, Li S, Lee PS. A stretchable and self-healing energy storage device based on mechanically and
                    electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv Mater 2019;31:e1805536.  DOI
                    PubMed
               181.      Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable,
                    recyclable, and reconfigurable wearable electronics. Sci Adv 2020;6:eabd0202.  DOI  PubMed  PMC
               182.      Ren X, Song M, Jiang J, et al. Fire-retardant and thermal-insulating cellulose nanofibril aerogel modified by in situ supramolecular
                    assembly of melamine and phytic acid. Adv Eng Mater 2022;24:2101534.  DOI
               183.      Wang Y, Yue Y, Cheng F, et al. Ti C Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022;16:1734-58.  DOI
                                          3  2
               184.      Sun X, Mao Y, Yu Z, Yang P, Jiang F. A biomimetic “salting out-alignment-locking” tactic to design strong and tough hydrogel. Adv
                    Mater 2024:e2400084.  DOI  PubMed
               185.      Mu C, Wang Y, Mei D, Wang S. Development of robotic hand tactile sensing system for distributed contact force sensing in robotic
                    dexterous multimodal grasping. Int J Intell Robot Appl 2022;6:760-72.  DOI
               186.      Deng C, Tang W, Liu L, Chen B, Li M, Wang ZL. Self-powered insole plantar pressure mapping system. Adv Funct Mater
                    2018;28:1801606.  DOI
               187.      Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:25.  DOI
               188.      Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array
                    architecture, and data acquisition method. Proc IEEE 2019;107:2065-83.  DOI
               189.      Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-
                    9.  DOI
               190.      Wang C, Xia K, Zhang M, Jian M, Zhang Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection.
                    ACS Appl Mater Interfaces 2017;9:39484-92.  DOI  PubMed
               191.      Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy
   44   45   46   47   48   49   50   51   52   53   54