Page 49 - Read Online
P. 49
Page 36 of 38 Zhu et al. Soft Sci 2024;4:17 https://dx.doi.org/10.20517/ss.2024.05
161. Chen X, Sun P, Tian H, et al. Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable
dynamic covalent elastomer. J Mater Chem C 2022;10:1039-47. DOI
162. Wang S, Bi S, Zhang L, Liu R, Wang H, Gu J. Skin-inspired antibacterial conductive hydrogels customized for wireless flexible
sensor and collaborative wound healing. J Mater Chem A 2023;11:14096-107. DOI
163. Pan X, Wang Q, Guo R, et al. An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J Mater
Chem A 2020;8:17498-506. DOI
164. Liu Z, Wang Y, Ren Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz
2020;7:919-27. DOI
165. Wang Y, Chang Q, Zhan R, et al. Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled
actuators. J Mater Chem A 2019;7:24814-29. DOI
166. Cui X, Chen J, Zhu Y, Jiang W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing
abilities based on carbon nanotubes filled conductive polymer composites. Chem Eng J 2020;382:122823. DOI
167. Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
nanostructured conducting network. Nat Nanotechnol 2018;13:1057-65. DOI
168. Li Y, Chen S, Wu M, Sun J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv Mater
2012;24:4578-82. DOI
169. Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart eutectic gallium-indium: from properties to applications. Adv Mater
2023;35:e2203391. DOI PubMed
170. Chen S, Fan S, Chan H, et al. Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare
applications. Adv Funct Mater 2023:2309989. DOI
171. Xu C, Ma B, Yuan S, Zhao C, Liu H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing
electronics. Adv Elect Mater 2020;6:1900721. DOI
172. Guo R, Sun X, Yuan B, Wang H, Liu J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing
materials, degradable electronics, and thermal transfer printing. Adv Sci 2019;6:1901478. DOI PubMed PMC
173. Yun G, Tang SY, Sun S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat Commun
2019;10:1300. DOI PubMed PMC
174. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for
robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24. DOI PubMed
175. Wang M, Rojas OJ, Ning L, et al. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial
cellulose hydrogels. Carbohydr Polym 2023;301:120330. DOI
176. Chu K, Song BG, Yang H, et al. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for
sustainable and flexible perovskite solar cells. Adv Funct Mater 2018;28:1800110. DOI
177. Blaiszik BJ, Kramer SL, Grady ME, et al. Autonomic restoration of electrical conductivity. Adv Mater 2012;24:398-401. DOI
178. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic gallium-indium (EGaIn): a liquid metal alloy
for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097-104. DOI
179. Krisnadi F, Nguyen LL, Ankit, et al. Directed assembly of liquid metal-elastomer conductors for stretchable and self-healing
electronics. Adv Mater 2020;32:e2001642. DOI
180. Park S, Thangavel G, Parida K, Li S, Lee PS. A stretchable and self-healing energy storage device based on mechanically and
electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv Mater 2019;31:e1805536. DOI
PubMed
181. Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable,
recyclable, and reconfigurable wearable electronics. Sci Adv 2020;6:eabd0202. DOI PubMed PMC
182. Ren X, Song M, Jiang J, et al. Fire-retardant and thermal-insulating cellulose nanofibril aerogel modified by in situ supramolecular
assembly of melamine and phytic acid. Adv Eng Mater 2022;24:2101534. DOI
183. Wang Y, Yue Y, Cheng F, et al. Ti C Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022;16:1734-58. DOI
3 2
184. Sun X, Mao Y, Yu Z, Yang P, Jiang F. A biomimetic “salting out-alignment-locking” tactic to design strong and tough hydrogel. Adv
Mater 2024:e2400084. DOI PubMed
185. Mu C, Wang Y, Mei D, Wang S. Development of robotic hand tactile sensing system for distributed contact force sensing in robotic
dexterous multimodal grasping. Int J Intell Robot Appl 2022;6:760-72. DOI
186. Deng C, Tang W, Liu L, Chen B, Li M, Wang ZL. Self-powered insole plantar pressure mapping system. Adv Funct Mater
2018;28:1801606. DOI
187. Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:25. DOI
188. Jeon S, Lim S, Trung TQ, Jung M, Lee N. Flexible multimodal sensors for electronic skin: principle, materials, device, array
architecture, and data acquisition method. Proc IEEE 2019;107:2065-83. DOI
189. Won SM, Wang H, Kim BH, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019;13:10972-
9. DOI
190. Wang C, Xia K, Zhang M, Jian M, Zhang Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection.
ACS Appl Mater Interfaces 2017;9:39484-92. DOI PubMed
191. Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy

