Page 45 - Read Online
P. 45

Page 32 of 38                            Zhu et al. Soft Sci 2024;4:17  https://dx.doi.org/10.20517/ss.2024.05

                    monolithic conductive sponges. ACS Appl Mater Interfaces 2019;11:6685-704.  DOI  PubMed
               40.       Zheng S, Wu X, Huang Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical
                    architecture. Compos Sci Technol 2020;197:108255.  DOI
               41.       Li K, Yang W, Yi M, Shen Z. Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Mater Struct
                    2021;30:085027.  DOI
               42.       Zhai Y, Yu Y, Zhou K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned
                    porous structure for multifunctional piezoresistive sensors. Chem Eng J 2020;382:122985.  DOI
               43.       Zheng Y, Xu H, Lou Z, Wang L, Han W. Ti C Tx quantum dots/leaf veins based sensors with ultra-broadrange high sensitivity. J
                                                 3  2
                    Phys D Appl Phys 2023;56:485402.  DOI
               44.       Oh J, Kim JO, Kim Y, et al. Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of
                    polypyrrole on elastomer template with uniform pore size. Small 2019;15:e1901744.  DOI  PubMed
               45.       Sencadas V, Tawk C, Alici G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable
                    electronics applications. ACS Appl Mater Interfaces 2020;12:8761-72.  DOI  PubMed
               46.       Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked
                    microstructures. ACS Nano 2014;8:12020-9.  DOI
               47.       Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
                    ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.  DOI
               48.       Ha M, Lim S, Park J, Um D, Lee Y, Ko H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and
                    dynamic pressure-sensitive electronic skins. Adv Funct Mater 2015;25:2841-9.  DOI
               49.       Miao L, Wan J, Song Y, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl Mater
                    Interfaces 2019;11:39219-27.  DOI
               50.       Park J, Kim J, Hong J, et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic
                    skins. NPG Asia Mater 2018;10:163-76.  DOI
               51.       Baek J, Shan Y, Mylvaganan M, et al. Mold-free manufacturing of highly sensitive and fast-response pressure sensors through high-
                    resolution 3D printing and conformal oxidative chemical vapor deposition polymers. Adv Mater 2023;35:e2304070.  DOI  PubMed
               52.       Mishra RB, El-Atab N, Hussain AM, Hussain MM. Flexible capacitive pressure sensors: recent progress on flexible capacitive
                    pressure sensors: from design and materials to applications (Adv. Mater. Technol. 4/2021). Adv Mater Technol 2021;6:2001023.  DOI
               53.       Wang H, Li Z, Liu Z, et al. Flexible capacitive pressure sensors for wearable electronics. J Mater Chem C 2022;10:1594-605.  DOI
               54.       Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater
                    2015;27:2433-9.  DOI  PubMed
               55.       Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
                    nanotubes. Nat Nanotechnol 2011;6:788-92.  DOI
               56.       Li J, Li J, Tang Y, et al. Touchable gustation via a hoffmeister gel iontronic sensor. ACS Nano 2023;17:5129-39.  DOI
               57.       Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J MaterSci
                    Technol 2020;43:175-88.  DOI
               58.       Kang S, Lee J, Lee S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv
                    Elect Mater 2016;2:1600356.  DOI
               59.       Tee BC, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z. Tunable flexible pressure sensors using microstructured elastomer
                    geometries for intuitive electronics. Adv Funct Mater 2014;24:5427-34.  DOI
               60.       Niu H, Gao S, Yue W, Li Y, Zhou W, Liu H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on
                    epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020;16:e1904774.  DOI
                    PubMed
               61.       Yao G, Xu L, Cheng X, et al. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv
                    Funct Mater 2020;30:1907312.  DOI
               62.       Zhu M, Lou M, Abdalla I, Yu J, Li Z, Ding B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring
                    and tactile sensing. Nano Energy 2020;69:104429.  DOI
               63.       Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications.
                    Exploration 2022;2:20210112.  DOI  PubMed  PMC
               64.       Meng X, Cai C, Luo B, et al. Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nanomicro
                    Lett 2023;15:124.  DOI  PubMed  PMC
               65.       Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy
                    2021;21:100786.  DOI
               66.       Jiang Y, Dong K, Li X, et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-
                    powered haptic sensors. Adv Funct Mater 2021;31:2005584.  DOI
               67.       Ma M, Zhang Z, Zhao Z, et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric
                    multi-effect coupling mechanism. Nano Energy 2019;66:104105.  DOI
               68.       Kwon SH, Zhang C, Jiang Z, Dong L. Textured nanofibers inspired by nature for harvesting biomechanical energy and sensing
                    biophysiological signals. Nano Energy 2024;122:109334.  DOI
               69.       Yu Y, Zhao X, Ge H, Ye L. A self-powered piezoelectric Poly(vinyl alcohol)/Polyvinylidene fluoride fiber membrane with
   40   41   42   43   44   45   46   47   48   49   50