Page 46 - Read Online
P. 46
Zhu et al. Soft Sci 2024;4:17 https://dx.doi.org/10.20517/ss.2024.05 Page 33 of 38
alternating multilayer porous structure for energy harvesting and wearable sensors. Compos Sci Technol 2024;247:110429. DOI
70. Scheffler S, Poulin P. Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 2022;14:16961-82. DOI PubMed
71. Ghosh SK, Mandal D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber
nanogenerator for wearable nano-tactile sensor. Nano Energy 2018;53:245-57. DOI
72. Huang A, Zhu Y, Peng S, Tan B, Peng X. Improved energy harvesting ability of single-layer binary fiber nanocomposite membrane
for multifunctional wearable hybrid piezoelectric and triboelectric nanogenerator and self-powered sensors. ACS Nano 2024;18:691-
702. DOI
73. Du H, Zhou H, Wang M, et al. Electrospun elastic films containing AgNW-bridged MXene networks as capacitive electronic skins.
ACS Appl Mater Interfaces 2022;14:31225-33. DOI
74. Wang H, Liu C, Li B, et al. Advances in carbon-based resistance strain sensors. ACS Appl Electron Mater 2023;5:674-89. DOI
75. Zhao Y, Liu Y, Li Y, Hao Q. Development and application of resistance strain force sensors. Sensors 2020;20:5826. DOI PubMed
PMC
76. Chen J, Yu Q, Cui X, et al. An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C
2019;7:11710-30. DOI
77. Zhou M, Yu Y, Zhou Y, Song L, Wang S, Na D. Graphene-based strain sensor with sandwich structure and its application in bowel
sounds monitoring. RSC Adv 2022;12:29103-12. DOI PubMed PMC
78. Feng P, Yuan Y, Zhong M, et al. Integrated resistive-capacitive strain sensors based on polymer-nanoparticle composites. ACS Appl
Nano Mater 2020;3:4357-66. DOI
79. Chen J, Li H, Yu Q, et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional
conductive fillers. Compos Sci Technol 2018;168:388-96. DOI
80. Ha S, Kim J. Simple route to performance modulation of resistive strain sensor based on strain-engineered stretchable substrate with
customized hard template. Compos Sci Technol 2022;217:109111. DOI
81. Zhou Y, Zhan P, Ren M, et al. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity
and superior durability for motion monitoring. ACS Appl Mater Interfaces 2019;11:7405-14. DOI
82. Na HR, Lee HJ, Jeon JH, et al. Vertical graphene on flexible substrate, overcoming limits of crack-based resistive strain sensors. npj
Flex Electron 2022;6:2. DOI
83. Qiao Y, Wang Y, Tian H, et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018;12:8839-46. DOI
84. Chen Z, Yang Z, Yu T, et al. Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature
monitoring with superlative temperature range and sensitivity. Compos Sci Technol 2023;232:109881. DOI
85. Fan M, Wu L, Hu Y, et al. A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with
ultrahigh sensitivity. Adv Compos Hybrid Mater 2021;4:1039-47. DOI
86. Han X, Xiao W, Wen S, et al. High-performance stretchable strain sensor based on Ag nanoparticles sandwiched between two 3D-
printed polyurethane fibrous textiles. Adv Elect Mater 2021;7:2001242. DOI
87. Yang YF, Tao LQ, Pang Y, et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale
2018;10:11524-30. DOI
88. Kang D, Pikhitsa PV, Choi YW, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature
2014;516:222-6. DOI
89. Chen Q, Chen K, Wu M, et al. Tough and fatigue-resistant anisotropic hydrogels via fiber reinforcement and magnetic field
induction. Sci China Mater 2023;66:4841-52. DOI
90. Wang Q, Zhang Q, Wang G, Wang Y, Ren X, Gao G. Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl Mater
Interfaces 2022;14:1921-8. DOI
91. Chang X, Chen L, Chen J, Zhu Y, Guo Z. Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater
2021;4:435-50. DOI
92. Lee CS, Hwang HS, Kim S, Fan J, Aghaloo T, Lee M. Inspired by nature: facile design of nanoclay-organic hydrogel bone sealant
with multifunctional properties for robust bone regeneration. Adv Funct Mater 2020;30:2003717. DOI PubMed PMC
93. Afewerki S, Edlund U. Unlocking the power of multicatalytic synergistic transformation: toward environmentally adaptable
organohydrogel. Adv Mater 2024;36:e2306657. DOI PubMed
94. Xie J, Su F, Fan L, et al. Robust and stretchable Ti C T MXene/PEI conductive composite dual-network hydrogels for ultrasensitive
3
2 x
strain sensing. Compos Part A Appl Sci Manuf 2024;176:107833. DOI
95. Lei D, Xiao Y, Xi M, Jiang Y, Li Y. Thermochromic and conductive hydrogels with tunable temperature sensitivity for dual sensing
of temperature and human motion. J Mater Chem C 2023;12:232-44. DOI
96. Zhang X, Rong Y, Li H, et al. High tensile properties, wide temperature tolerance, and DLP-printable eutectogels for microarrays
wearable strain sensors. Chem Eng J 2024;481:149004. DOI
97. Kim J, Hwang GW, Song M, et al. A reversible, versatile skin-attached haptic interface platform with bioinspired interconnection
architectures capable of resisting sweat and vibration. Adv Funct Mater 2024;34:2311167. DOI
98. Gao X, Wang X, Fan X. Highly sensitive flexible strain sensor based on microstructured biphasic hydrogels for human motion
monitoring. Front Mater Sci 2023;17:230665. DOI
99. Lu Y, Qu X, Wang S, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin.
Nano Res 2022;15:4421-30. DOI

