Page 46 - Read Online
P. 46

Zhu et al. Soft Sci 2024;4:17  https://dx.doi.org/10.20517/ss.2024.05           Page 33 of 38

                    alternating multilayer porous structure for energy harvesting and wearable sensors. Compos Sci Technol 2024;247:110429.  DOI
               70.       Scheffler S, Poulin P. Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 2022;14:16961-82.  DOI  PubMed
               71.       Ghosh SK, Mandal D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber
                    nanogenerator for wearable nano-tactile sensor. Nano Energy 2018;53:245-57.  DOI
               72.       Huang A, Zhu Y, Peng S, Tan B, Peng X. Improved energy harvesting ability of single-layer binary fiber nanocomposite membrane
                    for multifunctional wearable hybrid piezoelectric and triboelectric nanogenerator and self-powered sensors. ACS Nano 2024;18:691-
                    702.  DOI
               73.       Du H, Zhou H, Wang M, et al. Electrospun elastic films containing AgNW-bridged MXene networks as capacitive electronic skins.
                    ACS Appl Mater Interfaces 2022;14:31225-33.  DOI
               74.       Wang H, Liu C, Li B, et al. Advances in carbon-based resistance strain sensors. ACS Appl Electron Mater 2023;5:674-89.  DOI
               75.       Zhao Y, Liu Y, Li Y, Hao Q. Development and application of resistance strain force sensors. Sensors 2020;20:5826.  DOI  PubMed
                    PMC
               76.       Chen J, Yu Q, Cui X, et al. An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C
                    2019;7:11710-30.  DOI
               77.       Zhou M, Yu Y, Zhou Y, Song L, Wang S, Na D. Graphene-based strain sensor with sandwich structure and its application in bowel
                    sounds monitoring. RSC Adv 2022;12:29103-12.  DOI  PubMed  PMC
               78.       Feng P, Yuan Y, Zhong M, et al. Integrated resistive-capacitive strain sensors based on polymer-nanoparticle composites. ACS Appl
                    Nano Mater 2020;3:4357-66.  DOI
               79.       Chen J, Li H, Yu Q, et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional
                    conductive fillers. Compos Sci Technol 2018;168:388-96.  DOI
               80.       Ha S, Kim J. Simple route to performance modulation of resistive strain sensor based on strain-engineered stretchable substrate with
                    customized hard template. Compos Sci Technol 2022;217:109111.  DOI
               81.       Zhou Y, Zhan P, Ren M, et al. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity
                    and superior durability for motion monitoring. ACS Appl Mater Interfaces 2019;11:7405-14.  DOI
               82.       Na HR, Lee HJ, Jeon JH, et al. Vertical graphene on flexible substrate, overcoming limits of crack-based resistive strain sensors. npj
                    Flex Electron 2022;6:2.  DOI
               83.       Qiao Y, Wang Y, Tian H, et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018;12:8839-46.  DOI
               84.       Chen Z, Yang Z, Yu T, et al. Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature
                    monitoring with superlative temperature range and sensitivity. Compos Sci Technol 2023;232:109881.  DOI
               85.       Fan M, Wu L, Hu Y, et al. A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with
                    ultrahigh sensitivity. Adv Compos Hybrid Mater 2021;4:1039-47.  DOI
               86.       Han X, Xiao W, Wen S, et al. High-performance stretchable strain sensor based on Ag nanoparticles sandwiched between two 3D-
                    printed polyurethane fibrous textiles. Adv Elect Mater 2021;7:2001242.  DOI
               87.       Yang YF, Tao LQ, Pang Y, et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale
                    2018;10:11524-30.  DOI
               88.       Kang D, Pikhitsa PV, Choi YW, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature
                    2014;516:222-6.  DOI
               89.       Chen Q, Chen K, Wu M, et al. Tough and fatigue-resistant anisotropic hydrogels via fiber reinforcement and magnetic field
                    induction. Sci China Mater 2023;66:4841-52.  DOI
               90.       Wang Q, Zhang Q, Wang G, Wang Y, Ren X, Gao G. Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl Mater
                    Interfaces 2022;14:1921-8.  DOI
               91.       Chang X, Chen L, Chen J, Zhu Y, Guo Z. Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater
                    2021;4:435-50.  DOI
               92.       Lee CS, Hwang HS, Kim S, Fan J, Aghaloo T, Lee M. Inspired by nature: facile design of nanoclay-organic hydrogel bone sealant
                    with multifunctional properties for robust bone regeneration. Adv Funct Mater 2020;30:2003717.  DOI  PubMed  PMC
               93.       Afewerki S, Edlund U. Unlocking the power of multicatalytic synergistic transformation: toward environmentally adaptable
                    organohydrogel. Adv Mater 2024;36:e2306657.  DOI  PubMed
               94.       Xie J, Su F, Fan L, et al. Robust and stretchable Ti C T  MXene/PEI conductive composite dual-network hydrogels for ultrasensitive
                                                     3
                                                      2 x
                    strain sensing. Compos Part A Appl Sci Manuf 2024;176:107833.  DOI
               95.       Lei D, Xiao Y, Xi M, Jiang Y, Li Y. Thermochromic and conductive hydrogels with tunable temperature sensitivity for dual sensing
                    of temperature and human motion. J Mater Chem C 2023;12:232-44.  DOI
               96.       Zhang X, Rong Y, Li H, et al. High tensile properties, wide temperature tolerance, and DLP-printable eutectogels for microarrays
                    wearable strain sensors. Chem Eng J 2024;481:149004.  DOI
               97.       Kim J, Hwang GW, Song M, et al. A reversible, versatile skin-attached haptic interface platform with bioinspired interconnection
                    architectures capable of resisting sweat and vibration. Adv Funct Mater 2024;34:2311167.  DOI
               98.       Gao X, Wang X, Fan X. Highly sensitive flexible strain sensor based on microstructured biphasic hydrogels for human motion
                    monitoring. Front Mater Sci 2023;17:230665.  DOI
               99.       Lu Y, Qu X, Wang S, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin.
                    Nano Res 2022;15:4421-30.  DOI
   41   42   43   44   45   46   47   48   49   50   51