Page 44 - Read Online
P. 44
Zhu et al. Soft Sci 2024;4:17 https://dx.doi.org/10.20517/ss.2024.05 Page 31 of 38
9. Xu X, Guo L, Liu H, et al. Stretchable electronic facial masks for skin electroporation. Adv Funct Mater 2024;34:2311144. DOI
10. Ye Y, Wan Z, Gunawardane PDSH, et al. Ultra-stretchable and environmentally resilient hydrogels via sugaring-out strategy for soft
robotics sensing. Adv Funct Mater 2024:2315184. DOI
11. Ye Y, Oguzlu H, Zhu J, et al. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration
interactions. Adv Funct Mater 2023;33:2209787. DOI
12. Zhu P, Yu Z, Sun H, et al. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven
atmospheric water harvesting. Adv Mater 2024;36:e2306653. DOI
13. Chen F, Zhang S, Hu L, et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv
Funct Mater 2023;33:2300266. DOI
14. Zhan P, Zhai W, Wei W, et al. Stretchable strain sensor with high sensitivity, large workable range and excellent breathability for
wearable electronic skins. Compos Sci Technol 2022;229:109720. DOI
15. Bi Y, Sun M, Zhang Y, et al. Seconds timescale synthesis of highly stretchable antibacterial hydrogel for skin wound closure and
epidermal strain sensor. Adv Healthc Mater 2024;13:e2302810. DOI PubMed
16. Roy S, Deo KA, Lee HP, et al. 3D printed electronic skin for strain, pressure and temperature sensing. Adv Funct Mater
2024:2313575. DOI
17. Jiang N, Chang X, Hu D, et al. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature
sensors. Chem Eng J 2021;424:130418. DOI
18. Wu Z, Tai G, Liu R, Shao W, Hou C, Liang X. Synthesis of borophene on quartz towards hydroelectric generators. J Mater Chem A
2022;10:8218-26. DOI
19. Wang Y, Zhang L, Zhou J, Lu A. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl Mater Interfaces
2020;12:7631-8. DOI
20. Shen D, Xiao M, Xiao Y, et al. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent
voltage generation. ACS Appl Mater Interfaces 2019;11:14249-55. DOI
21. Dai J, Zhao H, Lin X, et al. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl Mater Interfaces
2019;11:6483-90. DOI
22. Wang Y, Shu R, Zhang X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial
polymer chain sliding. Angew Chem Int Ed Engl 2023;62:e202303446. DOI PubMed
23. Pei D, Yu S, Liu P, et al. Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal. Adv Funct Mater
2022;32:2204257. DOI
24. Bunea AC, Dediu V, Laszlo EA, et al. E-skin: the dawn of a new era of on-body monitoring systems. Micromachines 2021;12:1091.
DOI PubMed PMC
25. Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history,
design considerations, and recent progress. Adv Mater 2013;25:5997-6038. DOI PubMed
26. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices
for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765. DOI PubMed
27. Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin. Adv Funct Mater 2021;31:2104686.
DOI
28. Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing.
Small 2022;18:e2103734. DOI PubMed
29. Jung S, Kim JH, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv
Mater 2014;26:4825-30. DOI PubMed
30. Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano
2021;15:1795-804. DOI
31. Hou C, Wang H, Zhang Q, Li Y, Zhu M. Highly conductive, flexible, and compressible all-graphene passive electronic skin for
sensing human touch. Adv Mater 2014;26:5018-24. DOI PubMed
32. Cai Y, Shen J, Yang CW, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad
working range. Sci Adv 2020;6:eabb5367. DOI PubMed PMC
33. Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY. Wearable capacitive pressure sensor based on MXene composite
nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl Mater Interfaces 2020;12:22212-24. DOI
PubMed
34. Meng K, Xiao X, Wei W, et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater 2022;34:e2109357. DOI PubMed
35. Claver U, Zhao G. Recent progress in flexible pressure sensors based electronic skin. Adv Eng Mater 2021;23:2001187. DOI
36. Zhang S, Li S, Xia Z, Cai K. A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 2020;8:852-
62. DOI
37. Zhang J, Wei S, Liu C, et al. Porous nanocomposites with enhanced intrinsic piezoresistive sensitivity for bioinspired multimodal
tactile sensors. Microsyst Nanoeng 2024;10:19. DOI PubMed PMC
38. Duan L, Spoerk M, Wieme T, et al. Designing formulation variables of extrusion-based manufacturing of carbon black conductive
polymer composites for piezoresistive sensing. Compos Sci Technol 2019;171:78-85. DOI
39. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D

