Page 48 - Read Online
P. 48
Zhu et al. Soft Sci 2024;4:17 https://dx.doi.org/10.20517/ss.2024.05 Page 35 of 38
2016;16:833. DOI PubMed PMC
131. Boudaden J, Steinmaßl M, Endres HE, et al. Polyimide-based capacitive humidity sensor. Sensors 2018;18:1516. DOI PubMed
PMC
132. Hou C, Tai G, Liu Y, Wu Z, Wu Z, Liang X. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS 2
heterostructures. J Mater Chem A 2021;9:13100-8. DOI
133. Liu X, Hou C, Liu Y, et al. Borophene and BC N quantum dot heterostructures: ultrasensitive humidity sensing and multifunctional
2
applications. J Mater Chem A 2023;11:24789-99. DOI
134. Xu C, Zheng Z, Lin M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors. ACS Appl
Mater Interfaces 2020;12:35482-92. DOI
135. Li T, Zhao T, Zhang H, et al. A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact
human-machine interface. npj Flex Electron 2024;8:3. DOI
136. Chen L, Xu Y, Liu Y, et al. Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and
humidity. ACS Appl Mater Interfaces 2023;15:24923-32. DOI
137. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS based humidity sensors for electronic skin.
2
Nanoscale 2017;9:6246-53. DOI
138. Duan Z, Yuan Z, Jiang Y, Yuan L, Tai H. Amorphous carbon material of daily carbon ink: emerging applications in pressure, strain,
and humidity sensors. J Mater Chem C 2023;11:5585-600. DOI
139. Wang W, Nayeem MOG, Wang H, et al. Gas-permeable highly sensitive nanomesh humidity sensor for continuous measurement of
skin humidity. Adv Mater Technol 2022;7:2200479. DOI
140. Jeong W, Song J, Bae J, Nandanapalli KR, Lee S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS
Appl Mater Interfaces 2019;11:44758-63. DOI
141. Li T, Li L, Sun H, et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv Sci
2017;4:1600404. DOI
142. Xu L, Zhai H, Chen X, et al. Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human
activities monitoring. Chem Eng J 2021;412:128639. DOI
143. Niu G, Wang Z, Xue Y, et al. Pencil-on-paper humidity sensor treated with nacl solution for health monitoring and skin
characterization. Nano Lett 2023;23:1252-60. DOI
144. He J, Xiao P, Shi J, et al. High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable
graphene-polymer heterogeneous sensing junction. Chem Mater 2018;30:4343-54. DOI
145. Liu K, Wang M, Huang C, et al. Flexible bioinspired healable antibacterial electronics for intelligent human-machine interaction
sensing. Adv Sci 2024;11:e2305672. DOI PubMed PMC
146. Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent
assembly nanostructure. Nat Commun 2021;12:1291. DOI PubMed PMC
147. Khatib M, Zohar O, Saliba W, Haick H. A multifunctional electronic skin empowered with damage mapping and autonomic
acceleration of self-healing in designated locations. Adv Mater 2020;32:e2000246. DOI PubMed
148. Jun S, Kim SO, Lee H, et al. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea
bonds. J Mater Chem A 2019;7:3101-11. DOI
149. Liu R, Lai Y, Li S, et al. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano
Energy 2022;95:107056. DOI
150. Wang S, Urban MW. Self-healing polymers. Nat Rev Mater 2020;5:562-83. DOI
151. Huynh TP, Sonar P, Haick H. Advanced materials for use in soft self-healing devices. Adv Mater 2017:29. DOI PubMed
152. Han S, Chen S, Hu Z, et al. A near-infrared light-promoted self-healing photothermally conductive polycarbonate elastomer based on
Prussian blue and liquid metal for sensors. J Colloid Interface Sci 2024;654:955-66. DOI
153. Yeh C, Lin C, Han T, Xiao Y, Chen Y, Chou H. Disulfide bond and Diels-Alder reaction bond hybrid polymers with high
stretchability, transparency, recyclability, and intrinsic dual healability for skin-like tactile sensing. J Mater Chem A 2021;9:6109-16.
DOI
154. Xun X, Zhang Z, Zhao X, et al. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer.
ACS Nano 2020;14:9066-72. DOI
155. Gao Z, Lou Z, Han W, Shen G. A self-healable bifunctional electronic skin. ACS Appl Mater Interfaces 2020;12:24339-47. DOI
156. Zhang Z, Wang L, Yu H, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS
Appl Mater Interfaces 2020;12:15657-66. DOI
157. Wu J, Wu Z, Wei Y, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing
organohydrogels. ACS Appl Mater Interfaces 2020;12:19069-79. DOI
158. Liao H, Guo X, Wan P, Yu G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant
strain sensors. Adv Funct Mater 2019;29:1904507. DOI
159. Liu J, Zhang L, Wang N, Zhao H, Li C. Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with
damage detection and program-controlled autonomic repair. Nano Energy 2022;96:107108. DOI
160. Wei P, Chen T, Chen G, et al. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive
properties. ACS Appl Mater Interfaces 2020;12:3068-79. DOI

