Page 47 - Read Online
P. 47
Page 34 of 38 Zhu et al. Soft Sci 2024;4:17 https://dx.doi.org/10.20517/ss.2024.05
100. Li T, Wang Y, Li S, Liu X, Sun J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins.
Adv Mater 2020;32:e2002706. DOI
101. Mao Y, Wang L, Wu Z, et al. Thermochromic optical/electrical hydrated ionogel with anti-freezing and self-healing ability for
multimodal sensor. Compos Commun 2023;44:101769. DOI
102. Chun S, Son W, Choi C, et al. Bioinspired hairy skin electronics for detecting the direction and incident angle of airflow. ACS Appl
Mater Interfaces 2019;11:13608-15. DOI
103. Ji B, Zhou Q, Chen G, et al. In situ assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure
monitoring. J Mater Chem C 2020;8:15634-45. DOI
104. Pang C, Lee GY, Kim TI, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat
Mater 2012;11:795-801. DOI
105. Yu H, Guo H, Wang J, et al. Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional
shear forces. Adv Sci 2024;11:e2305883. DOI PubMed PMC
106. Zhu Y, Li Y, Xie D, et al. High-performance flexible tactile sensor enabled by multi-contact mechanism for normal and shear force
measurement. Nano Energy 2023;117:108862. DOI
107. Chen H, Song Y, Guo H, et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure
sensing and sliding detection. Nano Energy 2018;51:496-503. DOI
108. Joh H, Lee SW, Seong M, Lee WS, Oh SJ. Engineering the charge transport of Ag nanocrystals for highly accurate, wearable
temperature sensors through all-solution processes. Small 2017;13:1700247. DOI
109. Jeon J, Lee HB, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater
2013;25:850-5. DOI PubMed
110. Yamada S, Toshiyoshi H. Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces
2020;12:36449-57. DOI PubMed
111. Ren X, Pei K, Peng B, et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv Mater
2016;28:4832-8. DOI PubMed
112. Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater
2014;26:796-804. DOI
113. Nag A, Simorangkir RB, Gawade DR, et al. Graphene-based wearable temperature sensors: a review. Mater Design
2022;221:110971. DOI
114. Liu R, He L, Cao M, Sun Z, Zhu R, Li Y. Flexible temperature sensors. Front Chem 2021;9:539678. DOI PubMed PMC
115. Wang L, Zhu R, Li G. Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl Mater
Interfaces 2020;12:1953-61. DOI PubMed
116. Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv
Healthc Mater 2017;6:1601371. DOI PubMed
117. Li F, Xue H, Lin X, Zhao H, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl
Mater Interfaces 2022;14:43844-52. DOI PubMed
118. Zhang C, Zhou Y, Han H, Zheng H, Xu W, Wang Z. Dopamine-triggered hydrogels with high transparency, self-adhesion, and
thermoresponse as skinlike sensors. ACS Nano 2021;15:1785-94. DOI
119. Cao Z, Liu H, Jiang L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers
and ionic liquids. Mater Horiz 2020;7:912-8. DOI
120. Li Z, Huang J, Zhou R, et al. Temperature decoupling of a hydrogel-based strain sensor under a dynamic temperature field. Adv
Mater Technol 2023;8:2300404. DOI
121. Jia H, He Y, Zhang X, Du W, Wang Y. Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors.
Adv Elect Mater 2015;1:1500029. DOI
122. Ge G, Lu Y, Qu X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020;14:218-28. DOI
123. Wang F, Chen J, Cui X, Liu X, Chang X, Zhu Y. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and
temperature sensors insensitive to strain. ACS Appl Mater Interfaces 2022;14:30268-78. DOI PubMed
124. Zhang M, Duan Z, Zhang B, et al. Electrochemical humidity sensor enabled self-powered wireless humidity detection system. Nano
Energy 2023;115:108745. DOI
125. Gyu Son S, Jun Park H, Kim S, et al. Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics
process for printed wearable sweat-monitoring sensor. Chem Eng J 2023;454:140443. DOI
126. Yin F, Guo Y, Qiu Z, et al. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-
contact sensing. Nano Energy 2022;101:107541. DOI
127. Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water
evaporation on skin. ACS Sens 2017;2:828-33. DOI PubMed
128. Zhang D, Wang M, Tang M, et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their
prospective applications. Nano Res 2023;16:11938-58. DOI
129. Wang Y, Hou S, Li T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS
Appl Mater Interfaces 2020;12:41896-904. DOI
130. Gu L, Zhou D, Cao JC. Piezoelectric active humidity sensors based on lead-free NaNbO piezoelectric nanofibers. Sensors
3

