Page 47 - Read Online
P. 47

Page 34 of 38                            Zhu et al. Soft Sci 2024;4:17  https://dx.doi.org/10.20517/ss.2024.05

               100.      Li T, Wang Y, Li S, Liu X, Sun J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins.
                    Adv Mater 2020;32:e2002706.  DOI
               101.      Mao Y, Wang L, Wu Z, et al. Thermochromic optical/electrical hydrated ionogel with anti-freezing and self-healing ability for
                    multimodal sensor. Compos Commun 2023;44:101769.  DOI
               102.      Chun S, Son W, Choi C, et al. Bioinspired hairy skin electronics for detecting the direction and incident angle of airflow. ACS Appl
                    Mater Interfaces 2019;11:13608-15.  DOI
               103.      Ji B, Zhou Q, Chen G, et al. In situ assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure
                    monitoring. J Mater Chem C 2020;8:15634-45.  DOI
               104.      Pang C, Lee GY, Kim TI, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat
                    Mater 2012;11:795-801.  DOI
               105.      Yu H, Guo H, Wang J, et al. Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional
                    shear forces. Adv Sci 2024;11:e2305883.  DOI  PubMed  PMC
               106.      Zhu Y, Li Y, Xie D, et al. High-performance flexible tactile sensor enabled by multi-contact mechanism for normal and shear force
                    measurement. Nano Energy 2023;117:108862.  DOI
               107.      Chen H, Song Y, Guo H, et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure
                    sensing and sliding detection. Nano Energy 2018;51:496-503.  DOI
               108.      Joh H, Lee SW, Seong M, Lee WS, Oh SJ. Engineering the charge transport of Ag nanocrystals for highly accurate, wearable
                    temperature sensors through all-solution processes. Small 2017;13:1700247.  DOI
               109.      Jeon J, Lee HB, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater
                    2013;25:850-5.  DOI  PubMed
               110.      Yamada S, Toshiyoshi H. Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces
                    2020;12:36449-57.  DOI  PubMed
               111.      Ren X, Pei K, Peng B, et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv Mater
                    2016;28:4832-8.  DOI  PubMed
               112.      Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater
                    2014;26:796-804.  DOI
               113.      Nag  A,  Simorangkir  RB,  Gawade  DR,  et  al.  Graphene-based  wearable  temperature  sensors:  a  review.  Mater  Design
                    2022;221:110971.  DOI
               114.      Liu R, He L, Cao M, Sun Z, Zhu R, Li Y. Flexible temperature sensors. Front Chem 2021;9:539678.  DOI  PubMed  PMC
               115.      Wang L, Zhu R, Li G. Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl Mater
                    Interfaces 2020;12:1953-61.  DOI  PubMed
               116.      Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv
                    Healthc Mater 2017;6:1601371.  DOI  PubMed
               117.      Li F, Xue H, Lin X, Zhao H, Zhang T. Wearable temperature sensor with high resolution for skin temperature monitoring. ACS Appl
                    Mater Interfaces 2022;14:43844-52.  DOI  PubMed
               118.      Zhang C, Zhou Y, Han H, Zheng H, Xu W, Wang Z. Dopamine-triggered hydrogels with high transparency, self-adhesion, and
                    thermoresponse as skinlike sensors. ACS Nano 2021;15:1785-94.  DOI
               119.      Cao Z, Liu H, Jiang L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers
                    and ionic liquids. Mater Horiz 2020;7:912-8.  DOI
               120.      Li Z, Huang J, Zhou R, et al. Temperature decoupling of a hydrogel-based strain sensor under a dynamic temperature field. Adv
                    Mater Technol 2023;8:2300404.  DOI
               121.      Jia H, He Y, Zhang X, Du W, Wang Y. Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors.
                    Adv Elect Mater 2015;1:1500029.  DOI
               122.      Ge G, Lu Y, Qu X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020;14:218-28.  DOI
               123.      Wang F, Chen J, Cui X, Liu X, Chang X, Zhu Y. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and
                    temperature sensors insensitive to strain. ACS Appl Mater Interfaces 2022;14:30268-78.  DOI  PubMed
               124.      Zhang M, Duan Z, Zhang B, et al. Electrochemical humidity sensor enabled self-powered wireless humidity detection system. Nano
                    Energy 2023;115:108745.  DOI
               125.      Gyu Son S, Jun Park H, Kim S, et al. Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics
                    process for printed wearable sweat-monitoring sensor. Chem Eng J 2023;454:140443.  DOI
               126.      Yin F, Guo Y, Qiu Z, et al. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-
                    contact sensing. Nano Energy 2022;101:107541.  DOI
               127.      Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water
                    evaporation on skin. ACS Sens 2017;2:828-33.  DOI  PubMed
               128.      Zhang D, Wang M, Tang M, et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their
                    prospective applications. Nano Res 2023;16:11938-58.  DOI
               129.      Wang Y, Hou S, Li T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS
                    Appl Mater Interfaces 2020;12:41896-904.  DOI
               130.      Gu L, Zhou D, Cao JC. Piezoelectric active humidity sensors based on lead-free NaNbO  piezoelectric nanofibers. Sensors
                                                                                  3
   42   43   44   45   46   47   48   49   50   51   52