Page 63 - Read Online
P. 63

Bai et al. Soft Sci 2023;3:40  https://dx.doi.org/10.20517/ss.2023.38            Page 29 of 34

                    stretchable electronics. ACS Appl Mater Interfaces 2023;15:22291-300.  DOI
               56.       Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated
                    stretchable circuits. ACS Appl Mater Interfaces 2016;8:15459-65.  DOI
               57.       Afrin S, Haque E, Ren B, Ou JZ. Liquid elementary metals and alloys: synthesis, characterization, properties, and applications. Appl
                    Mater Today 2023;31:101746.  DOI
               58.       Zhang ZP, Xia H. Nanoarchitectonics and applications of gallium-based liquid metal micro- and nanoparticles. ChemNanoMat
                    2023;9:e202300078.  DOI
               59.       Xu D, Cao J, Liu F, et al. Liquid metal based nano-composites for printable stretchable electronics. Sensors 2022;22:2516.  DOI
                    PubMed  PMC
               60.       Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013;7:8366-78.  DOI  PubMed
               61.       Zheng R, Peng Z, Fu Y, et al. A novel conductive core-shell particle based on liquid metal for fabricating real-time self-repairing
                    flexible circuits. Adv Funct Mater 2020;30:1910524.  DOI
               62.       Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.
                    DOI  PubMed  PMC
               63.       Liu L, Huang H, Wang X, He P, Yang J. Recent advances in printed liquid metals for wearable healthcare sensors: a review. J Phys D
                    Appl Phys 2022;55:283002.  DOI
               64.      Zuraiqi K, Zavabeti A, Allioux FM, et al. Liquid metals in catalysis for energy applications. Joule 2020;4:2290-321.  DOI
               65.      Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.  DOI
               66.       Xie W, Allioux FM, Ou JZ, Miyako E, Tang SY, Kalantar-Zadeh K. Gallium-based liquid metal particles for therapeutics. Trends
                    Biotechnol 2021;39:624-40.  DOI  PubMed
               67.       Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev
                    2018;47:4073-111.  DOI
               68.       Lin ZD, Shu SC, Li A, et al. Preparation and mechanical property of graphene-reinforced copper matrix composites. J Inorg Mater
                    2019;34:469-77.  DOI
               69.      Jiang Q, Zhang S, Zhao M. Size-dependent melting point of noble metals. Mater Chem Phys 2003;82:225-7.  DOI
               70.       Bulmer  JS,  Kaniyoor  A,  Elliott  JA.  A  meta-analysis  of  conductive  and  strong  carbon  nanotube  materials.  Adv  Mater
                    2021;33:2008432.  DOI  PubMed
               71.      Ma KQ, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A 2007;361:252-6.  DOI
               72.       Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater
                    2018;20:1700781.  DOI
               73.       Tian L, Li Y, Webb RC, et al. Sensors: flexible and stretchable 3ω sensors for thermal characterization of human skin (Adv. Funct.
                    Mater. 26/2017). Adv Funct Mater 2017;27:1770159.  DOI
               74.       Singh K, Sharma S, Shriwastava S, Singla P, Gupta M, Tripathi CC. Significance of nano-materials, designs consideration and
                    fabrication techniques on performances of strain sensors - a review. Mat Sci Semicon Proc 2021;123:105581.  DOI
               75.       Song M, Daniels KE, Kiani A, Rashid-Nadimi S, Dickey MD. Interfacial tension modulation of liquid metal via electrochemical
                    oxidation. Adv Intell Syst 2021;3:2100024.  DOI
                                                                                                      2
               76.       Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM ixes)
                    with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces 2017;9:35977-87.  DOI
               77.       Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol
                    2019;4:1900183.  DOI
               78.       Ren L, Sun S, Casillas-Garcia G, et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive
                    electrodes. Adv Mater 2018;30:1802595.  DOI
               79.       Li M, Chen D, Deng X, et al. Graded Mxene-doped liquid metal as adhesion interface aiming for conductivity enhancement of hybrid
                    rigid-soft interconnection. ACS Appl Mater Interfaces 2023:15:14948-57.  DOI
               80.       Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing.
                    ACS Appl Mater Interfaces 2020;12:14125-35.  DOI
               81.       Zhu J, Xu Z, Ha S, et al. Gallium oxide for gas sensor applications: a comprehensive review. Materials 2022;15:7339.  DOI  PubMed
                    PMC
               82.       Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170.  DOI
                    PubMed  PMC
               83.       Afzal A. β-Ga O  nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance
                              2  3
                    enhancement strategies. J Materiomics 2019;5:542-57.  DOI
               84.       Fleischer M, Meixner H. Fast gas sensors based on metal oxides which are stable at high temperatures. Sens Actuators B Chem
                    1997;43:1-10.  DOI
               85.       Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors
                    2015;15:15684-716.  DOI  PubMed  PMC
               86.       Catalán-Gómez S, Redondo-Cubero A, Palomares FJ, Nucciarelli F, Pau JL. Tunable plasmonic resonance of gallium nanoparticles
                    by thermal oxidation at low temperatures. Nanotechnology 2017;28:405705.  DOI  PubMed
               87.       Knight MW, Coenen T, Yang Y, et al. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting
   58   59   60   61   62   63   64   65   66   67   68