Page 63 - Read Online
P. 63
Bai et al. Soft Sci 2023;3:40 https://dx.doi.org/10.20517/ss.2023.38 Page 29 of 34
stretchable electronics. ACS Appl Mater Interfaces 2023;15:22291-300. DOI
56. Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated
stretchable circuits. ACS Appl Mater Interfaces 2016;8:15459-65. DOI
57. Afrin S, Haque E, Ren B, Ou JZ. Liquid elementary metals and alloys: synthesis, characterization, properties, and applications. Appl
Mater Today 2023;31:101746. DOI
58. Zhang ZP, Xia H. Nanoarchitectonics and applications of gallium-based liquid metal micro- and nanoparticles. ChemNanoMat
2023;9:e202300078. DOI
59. Xu D, Cao J, Liu F, et al. Liquid metal based nano-composites for printable stretchable electronics. Sensors 2022;22:2516. DOI
PubMed PMC
60. Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013;7:8366-78. DOI PubMed
61. Zheng R, Peng Z, Fu Y, et al. A novel conductive core-shell particle based on liquid metal for fabricating real-time self-repairing
flexible circuits. Adv Funct Mater 2020;30:1910524. DOI
62. Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.
DOI PubMed PMC
63. Liu L, Huang H, Wang X, He P, Yang J. Recent advances in printed liquid metals for wearable healthcare sensors: a review. J Phys D
Appl Phys 2022;55:283002. DOI
64. Zuraiqi K, Zavabeti A, Allioux FM, et al. Liquid metals in catalysis for energy applications. Joule 2020;4:2290-321. DOI
65. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33. DOI
66. Xie W, Allioux FM, Ou JZ, Miyako E, Tang SY, Kalantar-Zadeh K. Gallium-based liquid metal particles for therapeutics. Trends
Biotechnol 2021;39:624-40. DOI PubMed
67. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev
2018;47:4073-111. DOI
68. Lin ZD, Shu SC, Li A, et al. Preparation and mechanical property of graphene-reinforced copper matrix composites. J Inorg Mater
2019;34:469-77. DOI
69. Jiang Q, Zhang S, Zhao M. Size-dependent melting point of noble metals. Mater Chem Phys 2003;82:225-7. DOI
70. Bulmer JS, Kaniyoor A, Elliott JA. A meta-analysis of conductive and strong carbon nanotube materials. Adv Mater
2021;33:2008432. DOI PubMed
71. Ma KQ, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A 2007;361:252-6. DOI
72. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater
2018;20:1700781. DOI
73. Tian L, Li Y, Webb RC, et al. Sensors: flexible and stretchable 3ω sensors for thermal characterization of human skin (Adv. Funct.
Mater. 26/2017). Adv Funct Mater 2017;27:1770159. DOI
74. Singh K, Sharma S, Shriwastava S, Singla P, Gupta M, Tripathi CC. Significance of nano-materials, designs consideration and
fabrication techniques on performances of strain sensors - a review. Mat Sci Semicon Proc 2021;123:105581. DOI
75. Song M, Daniels KE, Kiani A, Rashid-Nadimi S, Dickey MD. Interfacial tension modulation of liquid metal via electrochemical
oxidation. Adv Intell Syst 2021;3:2100024. DOI
2
76. Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM ixes)
with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces 2017;9:35977-87. DOI
77. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol
2019;4:1900183. DOI
78. Ren L, Sun S, Casillas-Garcia G, et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive
electrodes. Adv Mater 2018;30:1802595. DOI
79. Li M, Chen D, Deng X, et al. Graded Mxene-doped liquid metal as adhesion interface aiming for conductivity enhancement of hybrid
rigid-soft interconnection. ACS Appl Mater Interfaces 2023:15:14948-57. DOI
80. Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing.
ACS Appl Mater Interfaces 2020;12:14125-35. DOI
81. Zhu J, Xu Z, Ha S, et al. Gallium oxide for gas sensor applications: a comprehensive review. Materials 2022;15:7339. DOI PubMed
PMC
82. Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170. DOI
PubMed PMC
83. Afzal A. β-Ga O nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance
2 3
enhancement strategies. J Materiomics 2019;5:542-57. DOI
84. Fleischer M, Meixner H. Fast gas sensors based on metal oxides which are stable at high temperatures. Sens Actuators B Chem
1997;43:1-10. DOI
85. Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors
2015;15:15684-716. DOI PubMed PMC
86. Catalán-Gómez S, Redondo-Cubero A, Palomares FJ, Nucciarelli F, Pau JL. Tunable plasmonic resonance of gallium nanoparticles
by thermal oxidation at low temperatures. Nanotechnology 2017;28:405705. DOI PubMed
87. Knight MW, Coenen T, Yang Y, et al. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting

