Page 64 - Read Online
P. 64
Page 30 of 34 Bai et al. Soft Sci 2023;3:40 https://dx.doi.org/10.20517/ss.2023.38
gallium nanoparticles. ACS Nano 2015;9:2049-60. DOI
88. Losurdo M, Yi C, Suvorova A, et al. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. ACS
Nano 2014;8:3031-41. DOI
89. Yang Y, Akozbek N, Kim TH, et al. Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle
spectroscopic and mueller matrix ellipsometry. ACS Photonics 2014;1:582-9. DOI
90. Chen L, Wu M, Jing Q, et al. Gallium/gold composite microspheres fixed on a silicon substrate for surface enhanced Raman
scattering. RSC Adv 2015;5:67134-40. DOI
91. Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering. ACS Nano
2020;14:28-117. DOI
92. Horák M, Čalkovský V, Mach J, Křápek V, Šikola T. Plasmonic properties of individual gallium nanoparticles. J Phys Chem Lett
2023;14:2012-9. DOI PubMed PMC
93. Gao X, Fan X, Zhang J. Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis. Mater Horiz
2021;8:3315-23. DOI PubMed
94. Tang SY, Mitchell DRG, Zhao Q, et al. Phase separation in liquid metal nanoparticles. Matter 2019;1:192-204. DOI
95. Hou Y, Chang H, Song K, et al. Coloration of liquid-metal soft robots: from silver-white to iridescent. ACS Appl Mater Interfaces
2018;10:41627-36. DOI
96. Yang Y, Callahan JM, Kim TH, Brown AS, Everitt HO. Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman
spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett 2013;13:2837-41. DOI PubMed
97. Wu PC, Khoury CG, Kim TH, et al. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium
nanoparticles. J Am Chem Soc 2009;131:12032-3. DOI PubMed PMC
98. Pau JL, García-marín A, Hernández MJ, Lorenzo E, Piqueras J. Optical biosensing platforms based on Ga-graphene plasmonic
structures on Cu, quartz and SiO /Si substrates. Phys Status Solidi B 2016;253:664-70. DOI
2
99. Cai S, Mayyas M, Saborio MG, et al. Gallium nitride formation in liquid metal sonication. J Mater Chem C 2020;8:16593-602. DOI
100. Marín AG, García-Mendiola T, Bernabeu CN, et al. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide
polymorphism sensing. Nanoscale 2016;8:9842-51. DOI
101. Chen X, Chen Q, Wu D, et al. Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for low-cost
SERS substrates. J Raman Spectroscopy 2018;49:1301-10. DOI
102. Alsaif MMYA, Haque F, Alkathiri T, et al. 3D visible-light-driven plasmonic oxide frameworks deviated from liquid metal
nanodroplets. Adv Funct Mater 2021;31:2106397. DOI
103. Li J, Qi C, Lian Z, et al. Cell-capture and release platform based on peptide-aptamer-modified nanowires. ACS Appl Mater Interfaces
2016;8:2511-6. DOI
104. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47. DOI
105. Yi L, Jin C, Wang L, Liu J. Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials
2014;35:9789-801. DOI
106. Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:2201924.
DOI
107. Krug HF, Wick P. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 2011;50:1260-78. DOI PubMed
108. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012;64:129-37. DOI PubMed
109. Kumar VB, Gedanken A, Kimmel G, Porat Z. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.
Ultrason Sonochem 2014;21:1166-73. DOI PubMed
110. Creighton MA, Yuen MC, Susner MA, Farrell Z, Maruyama B, Tabor CE. Oxidation of gallium-based liquid metal alloys by water.
Langmuir 2020;36:12933-41. DOI PubMed
111. Adams WT 4th, Nolan MW, Ivanisevic A. Ga ion-enhanced and particle shape-dependent generation of reactive oxygen species in X-
ray-irradiated composites. ACS Omega 2018;3:5252-9. DOI PubMed PMC
112. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mater Sci Eng R Rep 2019;138:1-35. DOI
113. Schedle A, Samorapoompichit P, Rausch-Fan XH, et al. Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue
mast cells to various metal cations. J Dent Res 1995;74:1513-20. DOI
114. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics.
Nat Commun 2017;8:15432. DOI PubMed PMC
115. Tang SY, Qiao R, Lin Y, et al. Functional liquid metal nanoparticles produced by liquid-based nebulization. Adv Mater Technol
2019;4:1800420. DOI
116. Sun X, Sun M, Liu M, et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal
therapy. Nanoscale 2019;11:2655-67. DOI
117. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066. DOI PubMed PMC
118. Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater
Interfaces 2018;10:17448-54. DOI
119. Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing
indium-tin oxide. J Occup Health 2003;45:137-9. DOI
120. Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic

