Page 65 - Read Online
P. 65
Bai et al. Soft Sci 2023;3:40 https://dx.doi.org/10.20517/ss.2023.38 Page 31 of 34
agents for SMART embolization. Nanoscale 2021;13:8817-36. DOI
121. Zhang Y, Guo Z, Zhu H, et al. Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced
photoacoustic and photothermal performance. J Am Chem Soc 2022;144:6779-90. DOI
122. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small
2020;16:1903391. DOI
123. Yu F, Xu J, Li H, et al. Ga-In liquid metal nanoparticles prepared by physical vapor deposition. Prog Nat Sci Mater Int 2018;28:28-
33. DOI
124. Yarema M, Wörle M, Rossell MD, et al. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization,
surface plasmon resonance and Li-ion storage. J Am Chem Soc 2014;136:12422-30. DOI PubMed PMC
125. Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit
boards, and directly assembled liquid metal-elastomer conductors. ACS Appl Mater Interfaces 2022;14:37110-9. DOI
126. Yamaguchi A, Mashima Y, Iyoda T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew Chem Int Ed
Engl 2015;54:12809-13. DOI PubMed
127. Lu H, Tang SY, Dong Z, et al. Dynamic temperature control system for the optimized production of liquid metal nanoparticles.
ACS Appl Nano Mater 2020;3:6905-14. DOI
128. Lin Y, Genzer J, Dickey MD. Attributes, Fabrication, and applications of gallium-based liquid metal particles. Adv Sci
2020;7:2000192. DOI PubMed PMC
129. Tang SY, Qiao R, Yan S, et al. Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small
2018;14:1800118. DOI
130. Lin Y, Genzer J, Li W, Qiao R, Dickey MD, Tang SY. Sonication-enabled rapid production of stable liquid metal nanoparticles
grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions. Nanoscale 2018;10:19871-8. DOI PubMed
131. Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-induced shape morphing of liquid metal nanodroplets enabled by
polydopamine coating. Small 2019;15:1804838. DOI PubMed
132. Finkenauer LR, Lu Q, Hakem IF, Majidi C, Bockstaller MR. Analysis of the efficiency of surfactant-mediated stabilization reactions
of EGaIn nanodroplets. Langmuir 2017;33:9703-10. DOI PubMed
133. Wei Q, Sun M, Wang Z, et al. Surface engineering of liquid metal nanodroplets by attachable diblock copolymers. ACS Nano
2020;14:9884-93. DOI
134. Cossio G, Yu ET. Zeta potential dependent self-assembly for very large area nanosphere lithography. Nano Lett 2020;20:5090-6.
DOI PubMed
135. Hu C, Sun Q, He P, et al. Smart adhesive patches of antibacterial performance based on polydopamine-modified Ga liquid metal
nanodroplets. ACS Appl Nano Mater 2022;5:18349-56. DOI
136. He B, Liu S, Zhao X, et al. Dialkyl dithiophosphate-functionalized gallium-based liquid-metal nanodroplets as lubricant additives for
antiwear and friction reduction. ACS Appl Nano Mater 2020;3:10115-22. DOI
137. Xu D, Hu J, Pan X, Sánchez S, Yan X, Ma X. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions.
ACS Nano 2021;15:11543-54. DOI PubMed
138. Wang P, Xie H, Guo F, et al. Thiadiazole dimer-functionalized liquid metal nanoparticles for anti-corrosion and friction reduction.
ACS Appl Nano Mater 2023;6:5799-807. DOI
139. Huang X, Xu T, Shen A, Davis TP, Qiao R, Tang SY. Engineering polymers via understanding the effect of anchoring groups for
highly stable liquid metal nanoparticles. ACS Appl Nano Mater 2022;5:5959-71. DOI PubMed PMC
140. Tevis ID, Newcomb LB, Thuo M. Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing
liquids into complex particles (SLICE). Langmuir 2014;30:14308-13. DOI PubMed
141. Çınar S, Tevis ID, Chen J, Thuo M. Mechanical fracturing of core-shell undercooled metal particles for heat-free soldering. Sci Rep
2016;6:21864. DOI PubMed PMC
142. Li X, Wang Z, Dong G. Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-
based lubricant additive. Tribol Int 2020;148:106349. DOI
143. Hafiz SS, Labadini D, Riddell R, et al. Surfaces and interfaces of liquid metal core-shell nanoparticles under the microscope. Part
Part Syst Charact 2020;37:1900469. DOI PubMed PMC
144. Cutinho J, Chang BS, Oyola-Reynoso S, et al. Autonomous thermal-oxidative composition inversion and texture tuning of liquid
metal surfaces. ACS Nano 2018;12:4744-53. DOI
145. Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable
electronic, and medical applications. Adv Intell Syst 2022;4:2270059. DOI
146. Yu L, Qi X, Liu Y, Chen L, Li X, Xia Y. Transportable, endurable, and recoverable liquid metal powders with mechanical sintering
conductivity for flexible electronics and electromagnetic interference shielding. ACS Appl Mater Interfaces 2022;14:48150-60. DOI
147. Zeng H, Du XW, Singh SC, et al. Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 2012;22:1333-53.
DOI
148. Im HG, Jin J, Ko JH, Lee J, Lee JY, Bae BS. Flexible transparent conducting composite films using a monolithically embedded
AgNW electrode with robust performance stability. Nanoscale 2014;6:711-5. DOI
149. Zeng X, He P, Hu M, et al. Copper inks for printed electronics: a review. Nanoscale 2022;14:16003-32. DOI
150. Yu J, Xia J, Guan X, et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode

