Page 67 - Read Online
P. 67
Bai et al. Soft Sci 2023;3:40 https://dx.doi.org/10.20517/ss.2023.38 Page 33 of 34
182. Li BM, Reese BL, Ingram K, et al. Textile-integrated liquid metal electrodes for electrophysiological monitoring. Adv Healthc Mater
2022;11:2200745. DOI
183. Hu Y, Hao X, Chen G, Bian J, Li M, Peng F. Self-standing, photothermal-actuating, and motion-monitoring janus films one-pot
synthesized by green carboxymethyl glucomannan/liquid metal nanoinks. ACS Appl Mater Interfaces 2022;14:23717-25. DOI
184. Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc
Mater 2022;12:2202531. DOI
185. Park K, Pyeon J, Jeong SH, Yoon YJ, Kim H. Avalanche coalescence of liquid metal particles for uniform flexible and stretchable
electrodes. Adv Mater Interfaces 2022;9:2201693. DOI
186. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically
conductive and durable liquid-metal composite (Adv. Mater. 32/2022). Adv Mater 2022;34:2270236. DOI
187. Liu Y, Yang L, Chen Q, et al. Deposition of vertically aligned Ag/Ag S nanoflakes on EGaIn particles for humidity sensing.
2
Chemistry 2022;28:e202200298. DOI
188. Yang Y, Han J, Huang J, et al. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based
electrodes. Adv Funct Mater 2020;30:1909652. DOI
189. Zhang Z, Tang L, Chen C, et al. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple
sensations as artificial flexible sensors. J Mater Chem A 2021;9:875-83. DOI
190. Xu Y, Rothe R, Voigt D, et al. Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive
hydrogel adhesives. Nat Commun 2021;12:2407. DOI PubMed PMC
191. Chen B, Liu G, Wu M, et al. Liquid metal-based organohydrogels for wearable flexible electronics. Adv Mater Technol
2023;8:2201919. DOI
192. Zhou L, Li Y, Xiao J, et al. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors. Anal Chem
2023;95:3811-20. DOI
193. Dong Y, Wang C, Hu Z, et al. A sandwich-structure, low-temperature sensitive and recyclable liquid metal organic hydrogel for a
wearable strain sensor. J Appl Polymer Sci 2022;139:e53174. DOI
194. Liao M, Liao H, Ye J, Wan P, Zhang L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors.
ACS Appl Mater Interfaces 2019;11:47358-64. DOI PubMed
195. Cheng J, Shang J, Yang S, Dou J, Shi X, Jiang X. Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics.
Adv Funct Mater 2022;32:2200444. DOI
196. Zhao B, Bai Z, Lv H, et al. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance
electromagnetic shielding. Nanomicro Lett 2023;15:79. DOI PubMed PMC
197. Wang M, Feng X, Wang X, Hu S, Zhang C, Qi H. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal
nanoparticles. J Mater Chem A 2021;9:24539-47. DOI
198. Feng X, Wang C, Shang S, et al. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal
hydrogel sensor. Carbohydr Polym 2023;311:120786. DOI
199. Liu S, Guo Q, Wang X, Li G, Ma X, Xu Z. Fabrication of liquid metal loaded polycaprolactone conductive film for biocompatible
and flexible electronics. Biosens Bioelectron X 2022;11:100182. DOI
200. Chen B, Cao Y, Li Q, et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat Commun 2022;13:1206. DOI
PubMed PMC
201. Chen B, Wu M, Fang S, et al. Liquid metal-tailored PEDOT:PSS for noncontact flexible electronics with high spatial resolution. ACS
Nano 2022;16:19305-18. DOI
202. Lee GH, Lee YR, Kim H, et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft
electronics. Nat Commun 2022;13:2643. DOI PubMed PMC
203. Cao J, Liang F, Li H, et al. Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal
to mimic water-to-net interaction. InfoMat 2022;4:e12302. DOI
204. Zhang C, Allioux FM, Rahim MA, et al. Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles. Chem Mater
2020;32:4808-19. DOI
205. Sippel JM, Holden WE, Tilles SA, et al. Exhaled nitric oxide levels correlate with measures of disease control in asthma. J Allergy
Clin Immunol 2000;106:645-50. DOI
206. Yeung DKW, Griffith JF, Li AFW, Ma HT, Yuan J. Air pressure-induced susceptibility changes in vascular reactivity studies
using BOLD MRI. J Magn Reson Imaging 2013;38:976-80. DOI PubMed
207. Wang C, Li J, Fang Z, et al. Temperature-stress bimodal sensing conductive hydrogel-liquid metal by facile synthesis for smart
wearable sensor. Macromol Rapid Commun 2022;43:2100543. DOI
208. Kim S, Lee J. Indentation and temperature response of liquid metal/hydrogel composites. J Ind Eng Chem 2022;110:225-33. DOI
209. Gutiérrez Y, Losurdo M, García-fernández P, et al. Gallium polymorphs: phase-dependent plasmonics. Adv Opt Mater
2019;7:1900307. DOI
210. Losurdo M, Suvorova A, Rubanov S, Hingerl K, Brown AS. Thermally stable coexistence of liquid and solid phases in gallium
nanoparticles. Nat Mater 2016;15:995-1002. DOI PubMed
211. Li X, Zhu P, Zhang S, et al. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid
metal paper for multifunctional e-skin. ACS Nano 2022;16:5909-19. DOI

