Page 62 - Read Online
P. 62
Page 28 of 34 Bai et al. Soft Sci 2023;3:40 https://dx.doi.org/10.20517/ss.2023.38
23. Wang H, Zhou R, Li D, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti C T MXene for the
3
x
2
monitoring of human activities. ACS Nano 2021;15:9690-700. DOI
24. Li X, Yang J, Yuan W, et al. Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-
wide and tunable sensing range. Compos Commun 2021;23:100586. DOI
25. Wei Q, Chen G, Pan H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time
tactile sensing (Small Methods 2/2022). Small Methods 2022;6:2270012. DOI
26. Yue Y, Liu N, Liu W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy
2018;50:79-87. DOI
27. Zhao L, Wang L, Zheng Y, et al. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in
vivo biomonitoring. Nano Energy 2021;84:105921. DOI
28. Qin R, Li X, Hu M, Shan G, Seeram R, Yin M. Preparation of high-performance MXene/PVA-based flexible pressure sensors with
adjustable sensitivity and sensing range. Sens Actuator A Phys 2022;338:113458. DOI
29. Zhang R, Deng H, Valenca R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens
Actuator A Phys 2012;179:83-91. DOI
30. Huang J, Li D, Zhao M, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun
membrane for human motion detection. Adv Elect Mater 2019;5:1900241. DOI
31. Sun J, Zhou W, Yang H, et al. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.
Chem Commun 2018;54:4923-6. DOI
32. Hao Y, Gao J, Xu Z, Zhang N, Luo J, Liu X. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for
inkjet printing of flexible circuits. New J Chem 2019;43:2797-803. DOI
33. Wei Y, Chen S, Dong X, Lin Y, Liu L. Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward
graphene. Carbon 2017;113:395-403. DOI
34. Choi Y, Kang J, Secor EB, et al. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage
flexible logic circuits. Adv Funct Mater 2018;28:1802610. DOI
35. Xu X, Chen Y, He P, et al. Wearable CNT/Ti C T MXene/PDMS composite strain sensor with enhanced stability for real-time
3
x
2
human healthcare monitoring. Nano Res 2021;14:2875-83. DOI
36. Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl
Phys A 2019;125:714. DOI
37. Hosseinzadeh A, Bidmeshkipour S, Abdi Y, Arzi E, Mohajerzadeh S. Graphene based strain sensors: a comparative study on
graphene and its derivatives. Appl Surf Sci 2018;448:71-7. DOI
38. Zhang R, Pan P, Dai Q, et al. Sensitive and wearable carbon nanotubes/carbon black strain sensors with wide linear ranges for human
motion monitoring. J Mater Sci Mater Electron 2018;29:5589-96. DOI
39. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater
2019;31:1901337. DOI
40. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater
Interfaces 2018;5:1800571. DOI
41. Wang Y, Zhang P, Tan S, et al. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage
electromagnetic pumps. Int Commun Heat Mass Transf 2019;104:15-22. DOI
42. Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology 2021;32:092001. DOI PubMed
43. Wang X, Lu C, Rao W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and
bioheat-transfer applications. Appl Therm Eng 2021;192:116937. DOI
44. Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation - Basics and applications. Sol Energy Mater Sol Cells
2021;222:110925. DOI
45. Chen S, Wang L, Zhang Q, Liu J. Liquid metal fractals induced by synergistic oxidation. Sci Bull 2018;63:1513-20. DOI
46. Li DD, Liu TY, Ye J, Sheng L, Liu J. Liquid metal-enabled soft logic devices. Adv Intell Syst 2021;3:2000246. DOI
47. Liu TY, Li DD, Ye J, Li Q, Sheng L, Liu J. An integrated soft jumping robotic module based on liquid metals. Adv Eng Mater
2021;23:2100515. DOI
48. Shaini FJ, Shelton RM, Marquis PM, Shortall AC. In vitro evaluation of the effect of freshly mixed amalgam and gallium-based alloy
on the viability of primary periosteal and osteoblast cell cultures. Biomaterials 2000;21:113-9. DOI PubMed
49. Wang D, Lu C, Wang X, Rao W. In-situ synthesized liquid metal microgels. In: 2021 IEEE 16th International Conference on Nano/
Micro Engineered and Molecular Systems (NEMS); 2021 Apr 25-29; Xiamen, China. IEEE; 2021. p. 469-73. DOI
50. Hou Y, Zhang P, Wang D, Liu J, Rao W. Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma
therapy. ACS Appl Mater Interfaces 2020;12:27984-93. DOI PubMed
51. Kalantar-Zadeh K, Tang J, Daeneke T, et al. Emergence of liquid metals in nanotechnology. ACS Nano 2019;13:7388-95. DOI
52. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425. DOI PubMed
53. Farrell ZJ, Jacob AR, Truong VK, et al. Compositional design of surface oxides in gallium-indium alloys. Chem Mater 2023;35:964-
75. DOI
54. Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater 2023;33:2210961. DOI
55. Wang S, Liu C, Liu J, et al. Highly stable liquid metal conductors with superior electrical stability and tough interface bonding for

