Page 62 - Read Online
P. 62

Page 28 of 34                             Bai et al. Soft Sci 2023;3:40  https://dx.doi.org/10.20517/ss.2023.38

               23.       Wang H, Zhou R, Li D, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti C T  MXene for the
                                                                                            3
                                                                                               x
                                                                                              2
                    monitoring of human activities. ACS Nano 2021;15:9690-700.  DOI
               24.       Li X, Yang J, Yuan W, et al. Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-
                    wide and tunable sensing range. Compos Commun 2021;23:100586.  DOI
               25.       Wei Q, Chen G, Pan H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time
                    tactile sensing (Small Methods 2/2022). Small Methods 2022;6:2270012.  DOI
               26.       Yue Y, Liu N, Liu W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy
                    2018;50:79-87.  DOI
               27.       Zhao L, Wang L, Zheng Y, et al. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in
                    vivo biomonitoring. Nano Energy 2021;84:105921.  DOI
               28.       Qin R, Li X, Hu M, Shan G, Seeram R, Yin M. Preparation of high-performance MXene/PVA-based flexible pressure sensors with
                    adjustable sensitivity and sensing range. Sens Actuator A Phys 2022;338:113458.  DOI
               29.       Zhang R, Deng H, Valenca R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens
                    Actuator A Phys 2012;179:83-91.  DOI
               30.       Huang J, Li D, Zhao M, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun
                    membrane for human motion detection. Adv Elect Mater 2019;5:1900241.  DOI
               31.       Sun J, Zhou W, Yang H, et al. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.
                    Chem Commun 2018;54:4923-6.  DOI
               32.       Hao Y, Gao J, Xu Z, Zhang N, Luo J, Liu X. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for
                    inkjet printing of flexible circuits. New J Chem 2019;43:2797-803.  DOI
               33.       Wei Y, Chen S, Dong X, Lin Y, Liu L. Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward
                    graphene. Carbon 2017;113:395-403.  DOI
               34.       Choi Y, Kang J, Secor EB, et al. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage
                    flexible logic circuits. Adv Funct Mater 2018;28:1802610.  DOI
               35.       Xu X, Chen Y, He P, et al. Wearable CNT/Ti C T  MXene/PDMS composite strain sensor with enhanced stability for real-time
                                                   3
                                                      x
                                                    2
                    human healthcare monitoring. Nano Res 2021;14:2875-83.  DOI
               36.       Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl
                    Phys A 2019;125:714.  DOI
               37.       Hosseinzadeh A, Bidmeshkipour S, Abdi Y, Arzi E, Mohajerzadeh S. Graphene based strain sensors: a comparative study on
                    graphene and its derivatives. Appl Surf Sci 2018;448:71-7.  DOI
               38.       Zhang R, Pan P, Dai Q, et al. Sensitive and wearable carbon nanotubes/carbon black strain sensors with wide linear ranges for human
                    motion monitoring. J Mater Sci Mater Electron 2018;29:5589-96.  DOI
               39.       Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater
                    2019;31:1901337.  DOI
               40.       Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater
                    Interfaces 2018;5:1800571.  DOI
               41.       Wang Y, Zhang P, Tan S, et al. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage
                    electromagnetic pumps. Int Commun Heat Mass Transf 2019;104:15-22.  DOI
               42.       Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology 2021;32:092001.  DOI  PubMed
               43.       Wang X, Lu C, Rao W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and
                    bioheat-transfer applications. Appl Therm Eng 2021;192:116937.  DOI
               44.       Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation - Basics and applications. Sol Energy Mater Sol Cells
                    2021;222:110925.  DOI
               45.      Chen S, Wang L, Zhang Q, Liu J. Liquid metal fractals induced by synergistic oxidation. Sci Bull 2018;63:1513-20.  DOI
               46.      Li DD, Liu TY, Ye J, Sheng L, Liu J. Liquid metal-enabled soft logic devices. Adv Intell Syst 2021;3:2000246.  DOI
               47.       Liu TY, Li DD, Ye J, Li Q, Sheng L, Liu J. An integrated soft jumping robotic module based on liquid metals. Adv Eng Mater
                    2021;23:2100515.  DOI
               48.       Shaini FJ, Shelton RM, Marquis PM, Shortall AC. In vitro evaluation of the effect of freshly mixed amalgam and gallium-based alloy
                    on the viability of primary periosteal and osteoblast cell cultures. Biomaterials 2000;21:113-9.  DOI  PubMed
               49.       Wang D, Lu C, Wang X, Rao W. In-situ synthesized liquid metal microgels. In: 2021 IEEE 16th International Conference on Nano/
                    Micro Engineered and Molecular Systems (NEMS); 2021 Apr 25-29; Xiamen, China. IEEE; 2021. p. 469-73.  DOI
               50.       Hou Y, Zhang P, Wang D, Liu J, Rao W. Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma
                    therapy. ACS Appl Mater Interfaces 2020;12:27984-93.  DOI  PubMed
               51.       Kalantar-Zadeh K, Tang J, Daeneke T, et al. Emergence of liquid metals in nanotechnology. ACS Nano 2019;13:7388-95.  DOI
               52.       Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.  DOI  PubMed
               53.       Farrell ZJ, Jacob AR, Truong VK, et al. Compositional design of surface oxides in gallium-indium alloys. Chem Mater 2023;35:964-
                    75.  DOI
               54.       Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater 2023;33:2210961.  DOI
               55.       Wang S, Liu C, Liu J, et al. Highly stable liquid metal conductors with superior electrical stability and tough interface bonding for
   57   58   59   60   61   62   63   64   65   66   67