Page 76 - Read Online
P. 76

Wang. Soft Sci 2024;4:25  https://dx.doi.org/10.20517/ss.2024.14                 Page 9 of 9

               11.      Jin W, Liu L, Yang T, et al. Exploring Peltier effect in organic thermoelectric films. Nat Commun 2018;9:3586.  DOI  PubMed  PMC
               12.      Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature
                   control. Nat Rev Mater 2016;1:16050.  DOI
               13.      Clark J, Lanzani G. Organic photonics for communications. Nature Photon 2010;4:438-46.  DOI
               14.      Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.  DOI  PubMed
               15.      He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.  DOI
                   PubMed
               16.      Liu J, van der Zee B, Alessandri R, et al. N-type organic thermoelectrics: demonstration of ZT > 0.3. Nat Commun 2020;11:5694.  DOI
                   PubMed  PMC
               17.      Sun Y, Qiu L, Tang L, et al. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared
                   by an electrochemical method. Adv Mater 2016;28:3351-8.  DOI  PubMed
               18.      Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-
                   ethylenedioxythiophene). Nat Mater 2011;10:429-33.  DOI  PubMed
               19.      Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater
                   2013;12:719-23.  DOI  PubMed
               20.      Zeng YJ, Wu D, Cao XH, Zhou WX, Tang LM, Chen KQ. Nanoscale organic thermoelectric materials: measurement, theoretical
                   models, and optimization strategies. Adv Funct Mater 2020;30:1903873.  DOI
               21.      Hu E, Kaynak A, Li Y. Development of a cooling fabric from conducting polymer coated fibres: proof of concept. Synth Met
                   2005;150:139-43.  DOI
               22.      Wang S, Wohlrab S, Reith H, et al. Doped organic micro-thermoelectric coolers with rapid response time. Adv Elect Mater
                   2022;8:2200629.  DOI
               23.      Cui L, Miao R, Wang K, et al. Peltier cooling in molecular junctions. Nat Nanotechnol 2018;13:122-7.  DOI
               24.      Wang SJ, Panhans M, Lashkov I, et al. Highly efficient modulation doping: a path toward superior organic thermoelectric devices. Sci
                   Adv 2022;8:eabl9264.  DOI  PubMed  PMC
               25.      Walzer K, Maennig B, Pfeiffer M, Leo K. Highly efficient organic devices based on electrically doped transport layers. Chem Rev
                   2007;107:1233-71.  DOI  PubMed
               26.      Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N. Molecular electrical doping of organic semiconductors: fundamental
                   mechanisms and emerging dopant design rules. Acc Chem Res 2016;49:370-8.  DOI  PubMed
               27.      Yamashita Y, Tsurumi J, Ohno M, et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature
                   2019;572:634-8.  DOI
               28.      Skrypnychuk V, Wetzelaer GJ, Gordiichuk PI, et al. Ultrahigh mobility in an organic semiconductor by vertical chain alignment. Adv
                   Mater 2016;28:2359-66.  DOI
               29.      Sawatzki-Park M, Wang SJ, Kleemann H, Leo K. Highly ordered small molecule organic semiconductor thin-films enabling complex,
                   high-performance multi-junction devices. Chem Rev 2023;123:8232-50.  DOI  PubMed  PMC
               30.      Zhan S, Hong T, Qin B, et al. Realizing high-ranged thermoelectric performance in PbSnS  crystals. Nat Commun 2022;13:5937.  DOI
                                                                             2
                   PubMed  PMC
               31.      Bounioux C, Díaz-chao P, Campoy-quiles M, et al. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a
                   large power factor. Energy Environ Sci 2013;6:918-25.  DOI
               32.      Jiang Q, Yang J, Hing P, Ye H. Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric
                   composites. Mater Adv 2020;1:1038-54.  DOI
               33.      Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater
                   2018;30:1704386.  DOI  PubMed
               34.      Kim C, Lopez DH. Energy filtering and phonon scattering effects in Bi Te -PEDOT:PSS composite resulting in enhanced n-type
                                                                     3
                                                                   2
                   thermoelectric performance. Appl Phys Lett 2022;120:063903.  DOI
               35.      Borchert JW, Weitz RT, Ludwigs S, Klauk H. A critical outlook for the pursuit of lower contact resistance in organic transistors. Adv
                   Mater 2022;34:e2104075.  DOI  PubMed
               36.      Gao W, Lin W, Lu E. Numerical study on natural convection inside the channel between the flat-plate cover and sine-wave absorber of
                   a cross-corrugated solar air heater. Energy Convers Manag 2000;41:145-51.  DOI
               37.      Yuan D, Liu W, Zhu X. Efficient and air-stable n-type doping in organic semiconductors. Chem Soc Rev 2023;52:3842-72.  DOI
                   PubMed
               38.      Keum C, Murawski C, Archer E, Kwon S, Mischok A, Gather MC. A substrateless, flexible, and water-resistant organic light-emitting
                   diode. Nat Commun 2020;11:6250.  DOI  PubMed  PMC
   71   72   73   74   75   76   77   78   79   80   81