Page 15 - Read Online
P. 15
Shen et al. Soft Sci 2023;3:20 https://dx.doi.org/10.20517/ss.2023.10 Page 13 of 14
23. Imae I, Ogino R, Tsuboi Y, Goto T, Komaguchi K, Harima Y. Synthesis of EDOT-containing polythiophenes and their properties in
relation to the composition ratio of EDOT. RSC Adv 2015;5:84694-702. DOI
24. Imae I, Koumoto T, Harima Y. Thermoelectric properties of polythiophenes partially substituted by ethylenedioxy groups. Polymer
2018;144:43-50. DOI
25. Xue Y, Xue Z, Zhang W, et al. Enhanced electrochromic performances of Polythieno[3,2-b]thiophene with multicolor conversion via
embedding EDOT segment. Polymer 2018;159:150-6. DOI
26. Xue Y, Xue Z, Zhang W, et al. Thieno[3,2- b ]Thiophene end-capped all-sulfur analog of 3,4-ethylenedioxythiophene and its
eletrosynthesized polymer: is distorted conformation not suitable for electrochromism? J Polym Sci Part A: Polym Chem
2019;57:1041-8. DOI
27. Xue Y, Xue Z, Zhang W, et al. Effects on optoelectronic performances of EDOT end-capped oligomers and electrochromic polymers
by varying thienothiophene cores. J Electroanal Chem 2019;834:150-60. DOI
28. Zhu Z, Wang L, Gao C. Chapter3 - Thermoelectric properties of PEDOTs. Advanced PEDOT thermoelectric materials. Elsevier;2022.
p. 73-95. DOI
29. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-
ethylenedioxythiophene). Nat Mater 2011;10:429-33. DOI PubMed
30. Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity
directly and efficiently. Adv Mater 2014;26:6829-51. DOI
31. Beaujuge PM, Reynolds JR. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev
2010;110:268-320. DOI PubMed
32. Corradi R, Armes S. Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth Met 1997;84:453-4. DOI
33. Pei Q, Zuccarello G, Ahlskog M, Inganäs O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between
opaque blue-black and transparent sky blue. Polymer 1994;35:1347-51. DOI
34. Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution -
filtration. RSC Adv 2015;5:60708-12. DOI
35. Li X, Liu C, Zhou W, et al. Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-
ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 2019;11:8138-47. DOI
36. Jia Y, Liu C, Liu J, et al. Efficient enhancement of the thermoelectric performance of vapor phase polymerized poly(3,4-
ethylenedioxythiophene) films with poly(ethyleneimine). J Polym Sci Part B: Polym Phys 2019;57:257-65. DOI
37. Cho B, Park KS, Baek J, Oh HS, Koo Lee YE, Sung MM. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh
conductivity. Nano Lett 2014;14:3321-7. DOI PubMed
38. Shen L, Liu P, Liu C, et al. Advances in efficient polymerization of solid-state trithiophenes for organic thermoelectric thin-film. ACS
Appl Polym Mater 2020;2:376-84. DOI
39. Nicho ME, Hu H, López-Mata C, Escalante J. Synthesis of derivatives of polythiophene and their application in an electrochromic
device. Sol Energy Mater Sol Cells 2004;82:105-18. DOI
40. Gök A, Omastová M, Yavuz AG. Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth Met
2007;157:23-9. DOI
41. McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater
2006;5:328-33. DOI
42. Li M, Bai Z, Chen X, et al. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chinese Phys B
2022;31:027201. DOI
43. Lim E, Peterson KA, Su GM, Chabinyc ML. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-
tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F TCNQ) by vapor-phase infiltration. Chem Mater 2018;30:998-1010. DOI
4
44. Wang S. Emerging efficient charge-transport landscape based on short-range order in conjugated polymers. Synth Met 2019;251:104-
19. DOI
45. Perego G, Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym
Sci 1996;59:37-43. DOI
46. Stejskal J, Riede A, Hlavatá D, Prokeš J, Helmstedt M, Holler P. The effect of polymerization temperature on molecular weight,
crystallinity, and electrical conductivity of polyaniline. Synth Met 1998;96:55-61. DOI
47. Ouyang J, Xu Q, Chu C, Yang Y, Li G, Shinar J. On the mechanism of conductivity enhancement in poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004;45:8443-50. DOI
48. Imae I, Shi M, Ooyama Y, Harima Y. Seebeck coefficients of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) correlated
with oxidation levels. J Phys Chem C 2019;123:4002-6. DOI
49. Kiefer D, Giovannitti A, Sun H, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side
chains for organic thermoelectrics. ACS Energy Lett 2018;3:278-85. DOI PubMed PMC
50. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable
electronics. Chem Soc Rev 2018;47:2065-129. DOI PubMed
51. Dyer A, Grenier C, Reynolds J. A Poly(3,4-alkylenedioxythiophene) Electrochromic variable optical attenuator with near-infrared
reflectivity tuned independently of the visible region. Adv Funct Mater 2007;17:1480-6. DOI
52. Franke EB, Trimble CL, Hale JS, Schubert M, Woollam JA. Infrared switching electrochromic devices based on tungsten oxide. J

