Page 15 - Read Online
P. 15

Shen et al. Soft Sci 2023;3:20  https://dx.doi.org/10.20517/ss.2023.10          Page 13 of 14

               23.      Imae I, Ogino R, Tsuboi Y, Goto T, Komaguchi K, Harima Y. Synthesis of EDOT-containing polythiophenes and their properties in
                   relation to the composition ratio of EDOT. RSC Adv 2015;5:84694-702.  DOI
               24.      Imae I, Koumoto T, Harima Y. Thermoelectric properties of polythiophenes partially substituted by ethylenedioxy groups. Polymer
                   2018;144:43-50.  DOI
               25.      Xue Y, Xue Z, Zhang W, et al. Enhanced electrochromic performances of Polythieno[3,2-b]thiophene with multicolor conversion via
                   embedding EDOT segment. Polymer 2018;159:150-6.  DOI
               26.      Xue Y, Xue Z, Zhang W, et al. Thieno[3,2- b ]Thiophene end-capped all-sulfur analog of 3,4-ethylenedioxythiophene and its
                   eletrosynthesized polymer: is distorted conformation not suitable for electrochromism? J Polym Sci Part A: Polym Chem
                   2019;57:1041-8.  DOI
               27.      Xue Y, Xue Z, Zhang W, et al. Effects on optoelectronic performances of EDOT end-capped oligomers and electrochromic polymers
                   by varying thienothiophene cores. J Electroanal Chem 2019;834:150-60.  DOI
               28.      Zhu Z, Wang L, Gao C. Chapter3 - Thermoelectric properties of PEDOTs. Advanced PEDOT thermoelectric materials. Elsevier;2022.
                   p. 73-95. DOI
               29.      Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-
                   ethylenedioxythiophene). Nat Mater 2011;10:429-33.  DOI  PubMed
               30.      Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity
                   directly and efficiently. Adv Mater 2014;26:6829-51.  DOI
               31.      Beaujuge PM, Reynolds JR. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev
                   2010;110:268-320.  DOI  PubMed
               32.      Corradi R, Armes S. Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth Met 1997;84:453-4.  DOI
               33.      Pei Q, Zuccarello G, Ahlskog M, Inganäs O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between
                   opaque blue-black and transparent sky blue. Polymer 1994;35:1347-51.  DOI
               34.      Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution -
                   filtration. RSC Adv 2015;5:60708-12.  DOI
               35.      Li X, Liu C, Zhou W, et al. Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-
                   ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 2019;11:8138-47.  DOI
               36.      Jia Y, Liu C, Liu J, et al. Efficient enhancement of the thermoelectric performance of vapor phase polymerized poly(3,4-
                   ethylenedioxythiophene) films with poly(ethyleneimine). J Polym Sci Part B: Polym Phys 2019;57:257-65.  DOI
               37.      Cho B, Park KS, Baek J, Oh HS, Koo Lee YE, Sung MM. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh
                   conductivity. Nano Lett 2014;14:3321-7.  DOI  PubMed
               38.      Shen L, Liu P, Liu C, et al. Advances in efficient polymerization of solid-state trithiophenes for organic thermoelectric thin-film. ACS
                   Appl Polym Mater 2020;2:376-84.  DOI
               39.      Nicho ME, Hu H, López-Mata C, Escalante J. Synthesis of derivatives of polythiophene and their application in an electrochromic
                   device. Sol Energy Mater Sol Cells 2004;82:105-18.  DOI
               40.      Gök A, Omastová M, Yavuz AG. Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth Met
                   2007;157:23-9.  DOI
               41.      McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater
                   2006;5:328-33.  DOI
               42.      Li  M,  Bai  Z,  Chen  X,  et  al.  Thermoelectric  transport  in  conductive  poly(3,4-ethylenedioxythiophene).  Chinese  Phys  B
                   2022;31:027201.  DOI
               43.      Lim E, Peterson KA, Su GM, Chabinyc ML. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-
                   tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F TCNQ) by vapor-phase infiltration. Chem Mater 2018;30:998-1010.  DOI
                                                  4
               44.      Wang S. Emerging efficient charge-transport landscape based on short-range order in conjugated polymers. Synth Met 2019;251:104-
                   19.  DOI
               45.      Perego G, Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym
                   Sci 1996;59:37-43.  DOI
               46.      Stejskal J, Riede A, Hlavatá D, Prokeš J, Helmstedt M, Holler P. The effect of polymerization temperature on molecular weight,
                   crystallinity, and electrical conductivity of polyaniline. Synth Met 1998;96:55-61.  DOI
               47.      Ouyang  J,  Xu  Q,  Chu  C,  Yang  Y,  Li  G,  Shinar  J.  On  the  mechanism  of  conductivity  enhancement  in  poly(3,4-
                   ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004;45:8443-50.  DOI
               48.      Imae I, Shi M, Ooyama Y, Harima Y. Seebeck coefficients of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) correlated
                   with oxidation levels. J Phys Chem C 2019;123:4002-6.  DOI
               49.      Kiefer D, Giovannitti A, Sun H, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side
                   chains for organic thermoelectrics. ACS Energy Lett 2018;3:278-85.  DOI  PubMed  PMC
               50.      Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable
                   electronics. Chem Soc Rev 2018;47:2065-129.  DOI  PubMed
               51.      Dyer A, Grenier C, Reynolds J. A Poly(3,4-alkylenedioxythiophene) Electrochromic variable optical attenuator with near-infrared
                   reflectivity tuned independently of the visible region. Adv Funct Mater 2007;17:1480-6.  DOI
               52.      Franke EB, Trimble CL, Hale JS, Schubert M, Woollam JA. Infrared switching electrochromic devices based on tungsten oxide. J
   10   11   12   13   14   15   16   17   18   19   20