Page 14 - Read Online
P. 14

Page 12 of 14                           Shen et al. Soft Sci 2023;3:20  https://dx.doi.org/10.20517/ss.2023.10

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Wang S, Zuo G, Kim J, Sirringhaus H. Progress of conjugated polymers as emerging thermoelectric materials. Prog Polym Sci
                   2022;129:101548.  DOI
               2.       Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS. Polythiophene: from fundamental perspectives to applications. Chem Mater
                   2017;29:10248-83.  DOI
               3.       Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature
                   control. Nat Rev Mater 2016;1:16050.  DOI
               4.       Zhou X, Pan C, Gao C, et al. Thermoelectrics of two-dimensional conjugated benzodithiophene-based polymers: density-of-states
                   enhancement and semi-metallic behavior. J Mater Chem A 2019;7:10422-30.  DOI
               5.       Lee M, Jeon H, Jang M, Yang H. A physicochemical approach toward extending conjugation and the ordering of solution-processable
                   semiconducting polymers. ACS Appl Mater Interfaces 2016;8:4819-27.  DOI
               6.       See  KC,  Feser  JP,  Chen  CE,  Majumdar  A,  Urban  JJ,  Segalman  RA.  Water-processable  polymer-nanocrystal  hybrids  for
                   thermoelectrics. Nano Lett 2010;10:4664-7.  DOI  PubMed
               7.       Chabinyc M. Thermoelectric polymers: behind organics’ thermopower. Nat Mater 2014;13:119-21.  DOI  PubMed
               8.       Kang S, Jeffrey Snyder G. Charge-transport model for conducting polymers. Nat Mater 2017;16:252-7.  DOI  PubMed
               9.       Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated
                   polymers. Nat Mater 2013;12:1038-44.  DOI
               10.      Kawabata K, Osaka I, Nakano M, Takemura N, Koganezawa T, Takimiya K. Thienothiophene-2,5-Dione-based donor-acceptor
                   polymers: improved synthesis and influence of the donor units on ambipolar charge transport properties. Adv Electron Mater
                   2015;1:1500039.  DOI
               11.      Wang X, Sun Y, Chen S, et al. Effects of π-conjugated bridges on photovoltaic properties of donor-π-acceptor conjugated copolymers.
                   Macromolecules 2012;45:1208-16.  DOI
               12.      Cinar ME, Ozturk T. Thienothiophenes, dithienothiophenes, and thienoacenes: syntheses, oligomers, polymers, and properties. Chem
                   Rev 2015;115:3036-140.  DOI  PubMed
               13.      Zheng YQ, Lei T, Dou JH, et al. Strong electron-deficient polymers lead to high electron mobility in air and their morphology-
                   dependent transport behaviors. Adv Mater 2016;28:7213-9.  DOI
               14.      Bardagot O, Kubik P, Marszalek T, et al. Impact of morphology on charge carrier transport and thermoelectric properties of N-type
                   fbdopv-based polymers. Adv Funct Mater 2020;30:2000449.  DOI
               15.      Mcentee GJ, Skabara PJ, Vilela F, et al. Synthesis and electropolymerization of hexadecyl functionalized bithiophene and thieno[3,2- b
                   ]thiophene end-capped with EDOT and EDTT units. Chem Mater 2010;22:3000-8.  DOI
               16.      Son SY, Lee GY, Kim S, et al. Control of crystallite orientation in diketopyrrolopyrrole-based semiconducting polymers via tuning of
                   intermolecular interactions. ACS Appl Mater Interfaces 2019;11:10751-7.  DOI
               17.      Babudri F, Farinola GM, Naso F, Ragni R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the
                   fluorine atom. Chem Commun 2007:1003-22.  DOI  PubMed
               18.      de Silva KMN, Hwang E, Serem WK, Fronczek FR, Garno JC, Nesterov EE. Long-chain 3,4-ethylenedioxythiophene/thiophene oligomers
                   and semiconducting thin films prepared by their electropolymerization. ACS Appl Mater Interfaces 2012;4:5430-41.  DOI  PubMed
               19.      Dou L, Liu Y, Hong Z, Li G, Yang Y. Low-Bandgap near-ir conjugated polymers/molecules for organic electronics. Chem Rev
                   2015;115:12633-65.  DOI
               20.      Kim J, Park JB, Jung IH, et al. Well-controlled thieno[3,4-c]pyrrole-4,6-(5H)-dione based conjugated polymers for high performance
                   organic photovoltaic cells with the power conversion efficiency exceeding 9%. Energy Environ Sci 2015;8:2352-6.  DOI
               21.      Hwang H, Sin DH, Kulshreshtha C, et al. Synergistic effects of an alkylthieno[3,2-b]thiophene π-bridging backbone extension on the
                   photovoltaic performances of donor-acceptor copolymers. J Mater Chem A 2017;5:10269-79.  DOI
               22.      Cai P, Chen Z, Zhang L, Chen J, Cao Y. An extended π-conjugated area of electron-donating units in D-A structured polymers towards
                   high-mobility field-effect transistors and highly efficient polymer solar cells. J Mater Chem C 2017;5:2786-93.  DOI
   9   10   11   12   13   14   15   16   17   18   19